Underwater Explosion Analysis on Composite Marine Structures: A Comparison Between CEL and UEL Methods
Abstract
:1. Introduction
2. Modelling Approach
2.1. Coupled Eulerian–Lagrangian (CEL) Strategy
2.2. Uncoupled Eulerian–Lagrangian (UEL) Strategy
3. Case Study
3.1. UNDEX Scenario
3.2. Numerical Modelling
- Explicit modeling of added mass: in the second step, a numerical model is set up with water explicitly represented, performing a CEL simulation to account for FSI without solving the shock wave propagation.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bardiani, J.; Lomazzi, L.; Sbarufatti, C.; Manes, A. A Machine Learning-based Tool to Correlate Coupled and Uncoupled Numerical Simulations for Submerged Plates Subjected to Underwater Explosions. J. Marine. Sci. Appl. 2025. [Google Scholar] [CrossRef]
- de Camargo, F.V. Survey on experimental and numerical approaches to model underwater explosions. J. Mar. Sci. Eng. 2019, 7, 15. [Google Scholar] [CrossRef]
- Tran, P.; Wu, C.; Saleh, M.; Bortolan Neto, L.; Nguyen-Xuan, H.; Ferreira, A.J.M. Composite structures subjected to underwater explosive loadings: A comprehensive review. Compos. Struct. 2021, 263, 113684. [Google Scholar] [CrossRef]
- Ming, F.R.; Zhang, A.M.; Xue, Y.Z.; Wang, S.P. Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions. Ocean Eng. 2016, 117, 359–382. [Google Scholar] [CrossRef]
- Bardiani, J.; Sbarufatti, C.; Manes, A. Transfer Learning with Deep Neural Network Toward the Prediction of the Mass of the Charge in Underwater Explosion Events. J. Mar. Sci. Eng. 2025, 13, 190. [Google Scholar] [CrossRef]
- Qiankun, J.; Gangyi, D. A finite element analysis of ship sections subjected to underwater explosion. Int. J. Impact. Eng. 2011, 38, 558–566. [Google Scholar] [CrossRef]
- Rajendran, R.; Narasimhan, K. Deformation and fracture behaviour of plate specimens subjected to underwater explosion-a review. Int. J. Impact. Eng. 2006, 32, 1945–1963. [Google Scholar] [CrossRef]
- Ren, S.F.; Zhao, P.F.; Wang, S.P.; Liu, Y.Z. Damage prediction of stiffened plates subjected to underwater contact explosion using the machine learning-based method. Ocean Eng. 2022, 266, 112839. [Google Scholar] [CrossRef]
- Li, J.; Rong, J.L. Experimental and numerical investigation of the dynamic response of structures subjected to underwater explosion. Eur. J. Mech. B/Fluids 2012, 32, 59–69. [Google Scholar] [CrossRef]
- Cole, R.H.; Weller, R. Underwater Explosions. Phys. Today 1948, 1, 35. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, Y.S.; Liu, J.; Gan, L. The Fluid-Solid Interaction Dynamics between Underwater Explosion Bubble and Corrugated Sandwich Plate. Shock. Vib. 2016, 2016, 6057437. [Google Scholar] [CrossRef]
- Kong, X.S.; Gao, H.; Jin, Z.; Zheng, C.; Wang, Y. Predictions of the responses of stiffened plates subjected to underwater explosion based on machine learning. Ocean Eng. 2023, 283, 115216. [Google Scholar] [CrossRef]
- Löhner, R.; Li, L.; Soto, O.A.; Baum, J.D. An arbitrary Lagrangian–Eulerian method for fluid–structure interactions due to underwater explosions. Int. J. Numer. Methods Heat Fluid Flow 2023, 33, 2308–2349. [Google Scholar] [CrossRef]
- Sagar, H.J.; El Moctar, O. Dynamics of a cavitation bubble between oblique plates. Phys. Fluids 2023, 35, 013324. [Google Scholar] [CrossRef]
- Sigrist, J.F.; Broc, D. A versatile method to calculate the response of equipment mounted on ship hulls subjected to underwater shock waves. Finite Elem. Anal. Des. 2023, 218, 103917. [Google Scholar] [CrossRef]
- Walters, A.P.; Didoszak, J.M.; Kwon, Y.W. Explicit modeling of solid ocean floor in shallow underwater explosions. Shock. Vib. 2013, 20, 189–197. [Google Scholar] [CrossRef]
- Huang, H.; Jiao, Q.J.; Nie, J.X.; Qin, J.F. Numerical modeling of underwater explosion by one-dimensional ANSYS-AUTODYN. J. Energetic Mater. 2011, 29, 292–325. [Google Scholar] [CrossRef]
- Ding, P.; Buijk, A. Simulation of under water explosion using MSC Dytran. Ann. Arbor. 2006, 1001, 48105. [Google Scholar]
- Wang, Q. Multi-oscillations of a bubble in a compressible liquid near a rigid boundary. J. Fluid Mech. 2014, 745, 509–536. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, H.; Dong, T.; Xu, X. Dumbbell-Shaped Damage Effect of Closed Cylindrical Shell Subjected to Far-Field Side-On Underwater Explosion Shock Wave. J. Mar. Sci. Eng. 2022, 10, 1874. [Google Scholar] [CrossRef]
- DeRuntz, J.A.; Geers, T.L.; Felippa, C.A. The Underwater Shock Analysis Code (USA-Version 3): A Reference Manual; Defense Nuclear Agency: Washington, DC, USA, 1980.
- Qiu, G.; Henke, S.; Grabe, J. Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations. Comput. Geotech. 2011, 38, 30–39. [Google Scholar] [CrossRef]
- Giuliano, D.; Lomazzi, L.; Giglio, M.; Manes, A. On Eulerian-Lagrangian methods to investigate the blast response of composite plates. Int. J. Impact. Eng. 2023, 173, 104469. [Google Scholar] [CrossRef]
- Kumar, L.; Tummalapalli, S.; Rathi, S.C.; Murthy, L.B.; Krishna, A.; Misra, S. Machine learning with word embedding for detecting web-services anti-patterns. J. Comput. Lang. 2023, 75, 101207. [Google Scholar] [CrossRef]
- Lomazzi, L.; Morin, D.; Cadini, F.; Manes, A.; Aune, V. Deep learning-based analysis to identify fluid-structure interaction effects during the response of blast-loaded plates. Int. J. Prot. Struct. 2023, 15, 722–752. [Google Scholar] [CrossRef]
- The MacNeal-Schwendler Corporation (MSC). DYTRAN User Manual. 2023. Available online: https://www.manuallib.com/file/2615765 (accessed on 20 February 2025).
- Bardiani, J.; Kyaw Oo D’Amore, G.; Sbarufatti, C.; Manes, A. Machine Learning Combined with Numerical Simulations: An Effective Way to Reconstruct the Detonation Point of Contact Underwater Explosions with Seabed Reflection. J. Mar. Sci. Eng. 2025, 13, 526. [Google Scholar] [CrossRef]
- Bardiani, J.; Giglio, M.; Sbarufatti, C.; Manes, A. On the Exploration of the Influence of Seabed Reflected Waves on Naval Structures. Eng. Proc. 2025, 85, 7. [Google Scholar] [CrossRef]
- Nestegård, A.; Ronæss, M.; Hagen, Ø.; Ronold, K.; Bitner-Gregersen, E.M. New DNV Recommended Practice DNV-RP-C205 on Environmental Conditions and Environmental Loads. In Proceedings of the Sixteenth International Offshore and Polar Engineering Conference, San Francisco, CA, USA, 28 May 2006. [Google Scholar]
- ShipRight Design and Construction Structural Design Assessment Procedure for Primary Structure of Passenger Ships Working Together for a Safer World. 2017. Available online: https://www.academia.edu/14512983/Structural_Design_Assessment_Primary_Structure_of_Passenger_Ships_Guidance_on_direct_calculations (accessed on 20 February 2025).
- Singh, K.K.; Singh, N.K.; Jha, R. Analysis of symmetric and asymmetric glass fiber reinforced plastic laminates subjected to low-velocity impact. J. Compos. Mater. 2016, 50, 1853–1863. [Google Scholar] [CrossRef]
- Poloni, D.; Oboe, D.; Sbarufatti, C.; Giglio, M. Variable Thickness Strain Pre-Extrapolation for the Inverse Finite Element Method. Sensors 2023, 23, 1733. [Google Scholar] [CrossRef]
Structural Element | Type | Thickness [mm] |
---|---|---|
Outer bottom | Plate | 15 |
Inner bottom | Plate | 12 |
Girder | Plate | 10 |
Floor | Plate | 10 |
[MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | Thickness [mm] |
---|---|---|---|---|---|---|
26,000 | 26,000 | 0.1 | 3800 | 2800 | 2800 | 0.25 |
Material | MSC Dytran Model | Input Parameters |
---|---|---|
Fiber-reinforced composite | MAT2 (Anisotropic material) | See Table 2 |
Water | Polynomial EOS | |
Charge (TNT) | JWL EOS | |
Air above the free surface | Ideal gas EOS |
N° | Type |
---|---|
1 | CEL–Floating and deformable structure |
2 | UEL 1°step–Rigid and fixed structure |
3 | UEL 2°step–Deformable structure–No added mass contribution |
4 | UEL 2°step–Deformable structure–Considered added mass contribution |
N° | Type | Time | [m] | [m] | [m] |
---|---|---|---|---|---|
1 | CEL–Floating and deformable grillage | 1 h 31 min | 0.077 | 0.067 | 0.010 |
2 | UEL 1°step–Rigid and fixed grillage | 1 h 01 min | - | - | - |
3 | UEL 2°step–Deformable grillage–No added mass contribution | 1 min | 0.279 | 0.229 | 0.050 |
4 | UEL 2°step–Deformable grillage–Considered added mass contribution | 2 min | 0.211 | 0.182 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bardiani, J.; Kyaw Oo D’Amore, G.; Sbarufatti, C.; Manes, A. Underwater Explosion Analysis on Composite Marine Structures: A Comparison Between CEL and UEL Methods. J. Compos. Sci. 2025, 9, 177. https://doi.org/10.3390/jcs9040177
Bardiani J, Kyaw Oo D’Amore G, Sbarufatti C, Manes A. Underwater Explosion Analysis on Composite Marine Structures: A Comparison Between CEL and UEL Methods. Journal of Composites Science. 2025; 9(4):177. https://doi.org/10.3390/jcs9040177
Chicago/Turabian StyleBardiani, Jacopo, Giada Kyaw Oo D’Amore, Claudio Sbarufatti, and Andrea Manes. 2025. "Underwater Explosion Analysis on Composite Marine Structures: A Comparison Between CEL and UEL Methods" Journal of Composites Science 9, no. 4: 177. https://doi.org/10.3390/jcs9040177
APA StyleBardiani, J., Kyaw Oo D’Amore, G., Sbarufatti, C., & Manes, A. (2025). Underwater Explosion Analysis on Composite Marine Structures: A Comparison Between CEL and UEL Methods. Journal of Composites Science, 9(4), 177. https://doi.org/10.3390/jcs9040177