Composite Films Based on Poly(3-hexylthiophene):Perylene Diimide Derivative:Copper Sulfide Nanoparticles Deposited by Matrix Assisted Pulsed Laser Evaporation on Flexible Substrates for Photovoltaic Applications
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methods
2.2.1. Chemical Synthesis of the AMC14 (Perylene Diimide Derivative Compound) and CuS Nanoparticles
2.2.2. Fabrication of the Flexible Heterostructures Based on MAPLE Deposited Organic (P3HT:AMC14) and Composite (P3HT:AMC14:CuS) Layers
2.3. Characterization Techniques
3. Results and Discussion
3.1. Morphological and Structural Properties of the CuS Nanoparticles
3.2. Characterization of the MAPLE Deposited Films
3.2.1. Vibrational, Transmission and Photoluminescence Properties
3.2.2. Morphological, Compositional and Surface Topography Properties
3.3. Electrical Assessment of the Flexible Devices Based on MAPLE Deposited Films
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solak, E.K.; Irmak, E. Advances in Organic Photovoltaic Cells: A Comprehensive Review of Materials, Technologies, and Performance. RSC Adv. 2023, 13, 12244–12269. [Google Scholar] [CrossRef] [PubMed]
- Devasahayam, S.; Hussain, C.M. Thin-Film Nanocomposite Devices for Renewable Energy Current Status and Challenges. Sustain. Mater. Technol. 2020, 26, e00233. [Google Scholar] [CrossRef]
- Wu, X.; Xiao, B.; Sun, R.; Yang, X.; Zhang, M.; Gao, Y.; Xiao, B.; Papkovskaya, E.D.; Luponosov, Y.; Brabec, C.J.; et al. 19.46%-Efficiency all-polymer organic solar cells with excellent outdoor operating stability enabled by active layer reconstruction. Energy Environ. Sci. 2025, 18, 1812–1823. [Google Scholar] [CrossRef]
- Raza, M.A.; Rehman, Z.U.; Tanvir, M.G.; Maqsood, M.F. Metal oxide-conducting polymer-based composite electrodes for energy storage applications. In Renewable Polymers and Polymer-Metal Oxide Composites Synthesis, Properties, and Applications; Haider, S., Haider, A., Eds.; Elsevier: Cambridge, MA, USA, 2022; pp. 195–252. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N. Hybrid Nanocomposite Thin Films for Photovoltaic Applications: A Review. Nanomaterials 2021, 11, 1117. [Google Scholar] [CrossRef]
- Sorrentino, R.; Kozma, E.; Luzzati, S.; Po, R. Interlayers for non-fullerene-based polymer solar cells: Distinctive features and challenges. Energy Environ. Sci. 2021, 14, 180–223. [Google Scholar] [CrossRef]
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer Photovoltaic Cells—Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, 1789–1791. [Google Scholar] [CrossRef]
- Lakhotiya, G.; Belsare, N.; Rana, A.; Gupta, V. Cu2S nanocrystals incorporated highly efficient non-fullerene ternary organic solar cells. Curr. Appl. Phys. 2019, 19, 394–399. [Google Scholar] [CrossRef]
- Lakhotiya, G.; Belsare, N.; Arbuj, S.; Kale, B.; Rana, A. Enhanced performance of PTB7-Th:PCBM based active layers in ternary organic solar cells. RSC Adv. 2019, 9, 7457–7463. [Google Scholar] [CrossRef]
- Pascual-San-José, R.; Rodríguez-Martínez, X.; Adel-Abdelaleim, R.; Stella, M.; Martínez-Ferrero, E.; Campoy-Quiles, M. Blade coated P3HT:non-fullerene acceptor solar cells: A high-throughput parameter study with a focus on up-scalability. J. Mater. Chem. C 2019, 7, 20369–20382. [Google Scholar] [CrossRef]
- Berger, P.R.; Kim, M. Polymer solar cells: P3HT:PCBM and beyond. J. Renew. Sustain. Energy 2018, 10, 013508. [Google Scholar] [CrossRef]
- Zhang, F.; Zhuo, Z.; Zhang, J.; Wang, X.; Xu, X.; Wang, Z.; Xin, Y.; Wang, J.; Wang, J.; Tang, W.; et al. Influence of PC60BM or PC70BM as electron acceptor on the performance of polymer solar cells. Sol. Energy Mater. Sol. Cells 2012, 97, 71–77. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Zhong, W.; Leng, S.; Zhou, G.; Zou, Y.; Su, X.; Ding, H.; Gu, P.; Liu, F.; et al. Progress and Prospects of the Morphology of Non-Fullerene Acceptor Based High-Efficiency Organic Solar Cells. Energy Environ. Sci. 2021, 14, 4341–4357. [Google Scholar] [CrossRef]
- Xiao, Z.; Jia, X.; Ding, L. Ternary organic solar cells offer 14% power conversion efficiency. Sci. Bull. 2017, 62, 1562–1564. [Google Scholar] [CrossRef]
- Chang, L.; Sheng, M.; Duan, L.; Uddin, A. Ternary organic solar cells based on non-fullerene acceptors: A review. Org. Electron. 2021, 90, 106063. [Google Scholar] [CrossRef]
- Yuan, J.Y.; Gallagher, A.; Liu, Z.K.; Sun, Y.X.; Ma, W.L. High-efficiency polymer-PbS hybrid solar cells via molecular engineering. J. Mater. Chem. A 2015, 3, 2572–2579. [Google Scholar] [CrossRef]
- Tan, F.R.; Qu, S.C.; Wu, J.; Liu, K.; Zhou, S.Y.; Wang, Z.G. Preparation of SnS2 colloidal quantum dots and their application in organic/inorganic hybrid solar cells. Nanoscale Res. Lett 2011, 6, 298. [Google Scholar] [CrossRef]
- Yu, P.; Qu, S.; Jia, C.; Liu, K.; Tan, F. Modified synthesis of FeS2 quantum dots for hybrid bulk-heterojunction solar cells. Mater. Lett. 2015, 157, 235–238. [Google Scholar] [CrossRef]
- Jabeen, U.; Adhikari, T.; Shah, S.M.; Pathak, D.; Nunzi, J.-M. Synthesis, characterization and photovoltaic performance of Mn-doped ZnS quantum dots-P3HT hybrid bulk heterojunction solar cells. Opt. Mater. 2017, 73, 754–762. [Google Scholar] [CrossRef]
- Hamed, M.S.G.; Mola, G.T. Copper sulphide as a mechanism to improve energy harvesting in thin film solar cells. J. Alloys Compd. 2019, 802, 252–258. [Google Scholar] [CrossRef]
- Benchaabane, A.; Hamed, Z.B.; Telfah, A.; Sanhoury, M.A.; Kouki, F.; Zellama, K.; Bouchriha, H. Effect of OA-ZnSe nanoparticles incorporation on the performance of PVK organic photovoltaic cells. Mater. Sci. Semicond. Process. 2017, 64, 115–123. [Google Scholar] [CrossRef]
- Yang, X.-K.; Qiao, J.-W.; Chen, Z.-H.; Wen, Z.-C.; Yin, H.; Hao, X.-T. CdSe quantum dot organic solar cells with improved photovoltaic performance. J. Phys. D Appl. Phys. 2021, 54, 115504. [Google Scholar] [CrossRef]
- Tan, Z.N.; Zhang, W.Q.; Qian, D.P.; Zheng, H.; Xiao, S.Q.; Yang, Y.P.; Zhu, T.; Xu, J. Efficient hybrid infrared solar cells based on P3HT and PbSe nanocrystal quantum dots. Mater. Sci. Forum 2011, 685, 38–43. [Google Scholar] [CrossRef]
- Yao, S.; Chen, Z.; Li, F.; Xu, B.; Song, J.; Yan, L.; Jin, G.; Wen, S.; Wang, C.; Yang, B.; et al. High-efficiency aqueous-solutionprocessed hybrid solar cells based on P3HT dots and CdTe nanocrystals. ACS Appl. Mater. Interfaces 2015, 7, 7146–7152. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.K.; Kim, J.; Hong, K.; Oh, E.; Yang, Y.; Yu, D. Photocurrent and photovoltaic characteristics of copper sulfide nanowires grown by a hydrothermal method. Mater. Lett. 2014, 133, 132–134. [Google Scholar] [CrossRef]
- Sun, S.; Li, P.; Liang, S.; Yang, Z. Diversified Copper Sulfide (Cu2-XS) Micro-/Nanostructures: A Comprehensive Review on Synthesis, Modifications and Applications. Nanoscale 2017, 9, 11357–11404. [Google Scholar] [CrossRef]
- Singh, A.; Manivannan, R.; Victoria, S.N. Simple one-pot sonochemical synthesis of copper sulphide nanoparticles for solar cell applications. Arab. J. Chem. 2019, 12, 2439–2447. [Google Scholar] [CrossRef]
- Shaikh, G.Y.; Nilegave, D.S.; Girawale, S.S.; Kore, K.B.; Newaskar, S.R.; Sahu, S.A.; Funde, A.M. Structural, Optical, Photoelectrochemical, and Electronic Properties of the Photocathode CuS and the Efficient CuS/CdS Heterojunction. ACS Omega 2022, 7, 30233–30240. [Google Scholar] [CrossRef]
- Shamraiz, U.; Hussain, R.A.; Badshah, A. Fabrication and applications of copper sulfide (CuS) nanostructures. J. Solid State Chem. 2016, 238, 25–40. [Google Scholar] [CrossRef]
- Sangeetha, C.K.; Kusuma, J.; Himanshu, B.; Yogesh, J.; Sachin, R.R. Unveiling Electronic Structure, Band Alignment, and Charge Carrier Kinetics of Copper Sulfide. Phys. Chem. C 2024, 128, 20205–20214. [Google Scholar] [CrossRef]
- Kim, Y.; Heyne, B.; Abouserie, A.; Pries, C.; Ippen, C.; Günter, C.; Taubert, A.; Wedel, A. CuS nanoplates from ionic liquid precursors—Application in organic photovoltaic cells. J. Chem. Phys. 2018, 148, 193818. [Google Scholar] [CrossRef]
- Breazu, C.; Girtan, M.; Stanculescu, A.; Preda, N.; Rasoga, O.; Costas, A.; Catargiu, A.M.; Socol, G.; Stochioiu, A.; Popescu-Pelin, G.; et al. MAPLE-Deposited Perylene Diimide Derivative Based Layers for Optoelectronic Applications. Nanomaterials 2024, 14, 1733. [Google Scholar] [CrossRef]
- Mishra, A.; Bhuyan, N.N.; Xu, H.; Sharma, G.D. Advances in layer-by-layer processing for efficient and reliable organic solar cells. Mater. Adv. 2023, 4, 6031–6063. [Google Scholar] [CrossRef]
- Butt, M.A. Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings 2022, 12, 1115. [Google Scholar] [CrossRef]
- Caricato, A.P. MAPLE and MALDI: Theory and Experiments. In Lasers in Materials Science, 1st ed.; Castillejo, M., Ossi, P., Zhigilei, L., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 295–323. [Google Scholar] [CrossRef]
- Prodana, M.; Stoian, A.B.; Ionita, D.; Brajnicov, S.; Boerasu, I.; Enachescu, M.; Burnei, C. In-Depth Characterization of Two Bioactive Coatings Obtained Using MAPLE on TiTaZrAg. Materials 2024, 17, 2989. [Google Scholar] [CrossRef]
- Ge, W.; Atewologun, A.; Stiff-Roberts, A.D. Hybrid nanocomposite thin films deposited by emulsion-based resonant infrared matrix-assisted pulsed laser evaporation for photovoltaic applications. Org. Electron. 2015, 22, 98–107. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N.; Costas, A.; Breazu, C.; Stanculescu, A.; Rasoga, O.; Popescu-Pelin, G.; Mihailescu, A.; Socol, G. Hybrid organic-inorganic thin films based on zinc phthalocyanine and zinc oxide deposited by MAPLE. Appl. Surf. Sci. 2020, 503, 144317. [Google Scholar] [CrossRef]
- Yadav, S.; Bajpai, P. Synthesis of copper sulfide nanoparticles: Ph dependent phase stabilization. Nano-Struct. Nano-Objects 2017, 10, 151–158. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N.; Socol, G. Organic Thin Films Deposited by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) for Photovoltaic Cell Applications: A Review. Coatings 2021, 11, 1368. [Google Scholar] [CrossRef]
- Caricato, A.P.; Ge, W.; Stiff-Roberts, A.D. UV- and RIR-MAPLE: Fundamentals and Applications, 1st ed.; Springer Series in Materials Science; Springer Nature Switzerland: Cham, Switzerland, 2018; pp. 275–308. [Google Scholar] [CrossRef]
- Wu, M.-C.; Wu, Y.-J.; Yen, W.-C.; Lo, H.-H.; Lin, C.-F.; Su, W.-F. Correlation between nanoscale surface potential and power conversion efficiency of P3HT/TiO2 nanorod bulk heterojunction photovoltaic devices. Nanoscale 2010, 2, 1448. [Google Scholar] [CrossRef]
- Patz, T.M.; Doraiswamy, A.; Narayan, R.J.; Menegazzo, N.; Kranz, C.; Mizaikoff, B.; Zhong, Y.; Bellamkonda, R.; Bumgardner, J.D.; Elder, S.H.; et al. Matrix assisted pulsed laser evaporation of biomaterial thin films. Mater. Sci. Eng. C 2007, 27, 514–522. [Google Scholar] [CrossRef]
- Matus-Arrambide, A.; Mendoza-Jiménez, R.A.; Moure-Flores, F.; Mayén-Hernández, S.A.; Olvera-Amador, M.L.; Arenas-Arrocena, M.C.; Santos Cruz, J. Poly-3-hexylthiophene doped with iron disulfide nanoparticles for hybrid solar cells. Int. J. Energy Res. 2019, 43, 3723–3731. [Google Scholar] [CrossRef]
- Matras-Postołek, K.; Żaba, A.; Nowak, E.; Dąbczyński, P.; Rysz, J.; Sanetra, J. Formation and characterization of one-dimensional ZnS nanowires for ZnS/P3HT hybrid polymer solar cells with improved efficiency. Appl. Surf. Sci. 2018, 451, 180–190. [Google Scholar] [CrossRef]
- Kampen, T.U.; Salvan, G.; Paraian, A.; Himcinschi, C.; Kobitski, A.Y.; Friedrich, M.; Zahn, D.R.T. Orientation of perylene derivatives on semiconductor surfaces. Appl. Surf. Sci. 2013, 212–213, 501–507. [Google Scholar] [CrossRef]
- Barrett, H.P.; Kennedy, W.J.; Boucher, D.S. Spectroscopic characterization of P3HT/SWNT composites synthesized usingin situ GRIM methods: Improved polymer ordering via nanoscaffolding. J. Polym. Sci. Part B Polym. Phys. 2013, 52, 310–320. [Google Scholar] [CrossRef]
- Motaung, D.E.; Malgas, G.F.; Arendse, C.J. Comparative study: The effects of solvent on the morphology, optical and structural features of regioregular poly(3-hexylthiophene):fullerene thin films. Synth. Met. 2010, 160, 876–882. [Google Scholar] [CrossRef]
- Asir, S.; Demir, A.S.; Icıl, H. The synthesis of novel, unsymmetrically substituted, chiral naphthalene and perylene diimide: Photophysical, electrochemical, chiroptical and intramolecular charge transfer properties. Dye. Pigment. 2010, 84, 1–13. [Google Scholar] [CrossRef]
- Meena, S.; Chhillar, P.; Pathak, S.; Roose, B.; Jacob, J. Perylene diimide based low band gap copolymers: Synthesis, characterization and their applications in perovskite solar cells. J. Polym. Res. 2020, 27, 226. [Google Scholar] [CrossRef]
- Raj, S.I.; Jaiswal, A.; Uddin, I. Ultrasmall aqueous starch-capped CuS quantum dots with tunable localized surface plasmon resonance and composition for the selective and sensitive detection of mercury(ii) ions. RSC Adv. 2020, 10, 14050–14059. [Google Scholar] [CrossRef]
- Available online: https://docbrown.info/page06/spectra/chlorobenzene-ir.htm (accessed on 16 December 2024).
- Socol, M.; Preda, N.; Breazu, C.; Petre, G.; Stanculescu, A.; Stavarache, I.; Popescu-Pelin, G.; Stochioiu, A.; Socol, G.; Iftimie, S.; et al. Effects of Solvent Additive and Micro-Patterned Substrate on the Properties of Thin Films Based on P3HT:PC70BM Blends Deposited by MAPLE. Materials 2023, 16, 144. [Google Scholar] [CrossRef]
- Ge, W.; Li, N.K.; McCormick, R.D.; Lichtenberg, E.; Yingling, Y.G.; Stiff-Roberts, A.D. Emulsion-based RIR-MAPLE deposition of conjugated polymers: Primary solvent effect and its implications on organic solar cell performance. ACS Appl. Mater. Interfaces 2016, 8, 19494–19506. [Google Scholar] [CrossRef]
- Wei, W.; Ouyang, S.; Zhang, T. Perylene diimide self-assembly: From electronic structural modulation to photocatalytic applications. J. Semicond. 2020, 41, 091708. [Google Scholar] [CrossRef]
- Balambiga, B.; Dheepika, R.; Devibala, P.; Imran, P.M.; Nagarajan, S. Picene and PTCDI based solution processable ambipolar OFETs. Sci. Rep. 2020, 10, 22029. [Google Scholar] [CrossRef]
- Mohamad, D.K.; Fischereder, A.; Yi, H.; Cadby, A.J.; Lidzey, D.G.; Iraqi, A. A Novel 2,7-Linked Carbazole Based “Double Cable” Polymer with Pendant Perylene Diimide Functional Groups: Preparation, Spectroscopy and Photovoltaic Properties. J. Mater. Chem. 2011, 21, 851–862. [Google Scholar] [CrossRef]
- Erdmann, T.; Back, J.; Tkachov, R.; Ruff, A.; Voit, B.; Ludwigs, S.; Kiriy, A. Dithienosilole-based all-conjugated block copolymers synthesized by a combination of quasi-living Kumada and Negishi catalyst-transfer polycondensations. Polym. Chem. 2014, 5, 5383–5390. [Google Scholar] [CrossRef]
- Lucenti, E.; Botta, C.; Cariati, E.; Righetto, S.; Scarpellini, M.; Tordin, E.; Ugo, R. New organic-inorganic hybrid materials based on perylene diimide-polyhedral oligomeric silsesquioxane dyes with reduced quenching of the emission in the solid state. Dye. Pigment. 2013, 96, 748–755. [Google Scholar] [CrossRef]
- Stanculescu, A.; Breazu, C.; Socol, M.; Rasoga, O.; Preda, N.; Petre, G.; Solonaru, A.M.; Grigoras, M.; Stanculescu, F.; Socol, G.; et al. Effect of ITO electrode patterning on the properties of organic heterostructures based on non-fullerene acceptor prepared by MAPLE. Appl. Surf. Sci. 2020, 509, 145351. [Google Scholar] [CrossRef]
- Farr, E.P.; Fontana, M.T.; Zho, C.C.; Wu, P.; Li, Y.P.; Knutson, N.; Rubin, Y.; Schwartz, B. Bay-Linked Perylenediimides are Two Molecules in One: Insights from Ultrafast Spectroscopy, Temperature Dependence, and Time-Dependent Density Functional Theory Calculations. J. Phys. Chem. C 2019, 123, 2127–2138. [Google Scholar] [CrossRef]
- Kozma, E.; Kotowski, D.; Luzzati, S.; Catellani, M.; Bertini, F.; Famulari, A.; Raos, G. Improving the efficiency of P3HT:perylene diimide solar cells via bay-substitution with fused aromatic rings. RSC Adv. 2013, 3, 9185. [Google Scholar] [CrossRef]
- Karak, S.; Ray, S.K.; Dhar, A. Photoinduced charge transfer and photovoltaic energy conversion in self-assembled N, N′-dioctyl-3,4,9,10-perylenedicarboximide nanoribbons. Appl. Phys. Lett. 2010, 97, 043306. [Google Scholar] [CrossRef]
- Stanculescu, F.; Rasoga, O.; Catargiu, A.M.; Vacareanu, L.; Socol, M.; Breazu, C.; Preda, N.; Socol, G.; Stanculescu, A. MAPLE prepared heterostructures with arylene based polymer active layer for photovoltaic applications. Appl. Surf. Sci. 2015, 336, 240–248. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N.; Costas, A.; Borca, B.; Popescu-Pelin, G.; Mihailescu, A.; Socol, G.; Stanculescu, A. Thin Films Based on Cobalt Phthalocyanine:C60 Fullerene:ZnO Hybrid Nanocomposite Obtained by Laser Evaporation. Nanomaterials 2020, 10, 468. [Google Scholar] [CrossRef]
- Boobalan, G.; Imran, K.M.; Manoharan, C.; Nagarajan, S. Fabrication of highly fluorescent perylene bisimide nanofibers through interfacial self-assembly. J. Colloid Interface Sci. 2013, 393, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiu, T.; Tao, G.-H.; Wang, G.; Sun, C.; Li, P.; Fang, J.; He, L. Manipulating surface ligands of Copper Sulfide nanocrystals: Synthesis, characterization, and application to organic solar cells. J. Colloid Interface Sci. 2014, 419, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Irshad, Z.; Hussain, R.; Lee, W.; Kim, M.; Lim, J. Efficient ternary active layer materials for organic photovoltaics. Sol. Energy 2023, 257, 324–343. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Socol, M.; Preda, N.; Costas, A.; Petre, G.; Stochioiu, A.; Popescu-Pelin, G.; Iftimie, S.; Catargiu, A.M.; Socol, G.; Stanculescu, A. Composite Films Based on Poly(3-hexylthiophene):Perylene Diimide Derivative:Copper Sulfide Nanoparticles Deposited by Matrix Assisted Pulsed Laser Evaporation on Flexible Substrates for Photovoltaic Applications. J. Compos. Sci. 2025, 9, 172. https://doi.org/10.3390/jcs9040172
Socol M, Preda N, Costas A, Petre G, Stochioiu A, Popescu-Pelin G, Iftimie S, Catargiu AM, Socol G, Stanculescu A. Composite Films Based on Poly(3-hexylthiophene):Perylene Diimide Derivative:Copper Sulfide Nanoparticles Deposited by Matrix Assisted Pulsed Laser Evaporation on Flexible Substrates for Photovoltaic Applications. Journal of Composites Science. 2025; 9(4):172. https://doi.org/10.3390/jcs9040172
Chicago/Turabian StyleSocol, Marcela, Nicoleta Preda, Andreea Costas, Gabriela Petre, Andrei Stochioiu, Gianina Popescu-Pelin, Sorina Iftimie, Ana Maria Catargiu, Gabriel Socol, and Anca Stanculescu. 2025. "Composite Films Based on Poly(3-hexylthiophene):Perylene Diimide Derivative:Copper Sulfide Nanoparticles Deposited by Matrix Assisted Pulsed Laser Evaporation on Flexible Substrates for Photovoltaic Applications" Journal of Composites Science 9, no. 4: 172. https://doi.org/10.3390/jcs9040172
APA StyleSocol, M., Preda, N., Costas, A., Petre, G., Stochioiu, A., Popescu-Pelin, G., Iftimie, S., Catargiu, A. M., Socol, G., & Stanculescu, A. (2025). Composite Films Based on Poly(3-hexylthiophene):Perylene Diimide Derivative:Copper Sulfide Nanoparticles Deposited by Matrix Assisted Pulsed Laser Evaporation on Flexible Substrates for Photovoltaic Applications. Journal of Composites Science, 9(4), 172. https://doi.org/10.3390/jcs9040172