Plasmonic Rutile TiO2/Ag Nanocomposites Tailored via Nonthermal-Plasma-Assisted Synthesis: Enhanced Spectroscopic and Optical Properties with Tuned Electrical Behavior
Abstract
1. Introduction
2. Materials and Methods
2.1. Plasma-Aided Synthesis of Ag/R-TiO2 NPs
2.2. Characterization Techniques
3. Results and Discussion
3.1. Morphology and Structure of R-TiO2 and Ag/R-TiO2 Nanoparticles
Williamson–Hall Plot
3.2. Vibrational and Chemical Composition Analysis
3.3. UV-Vis and Fluorescence Spectroscopy
3.4. Dielectric Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Shooshtari, M.; Salehi, A. An electronic nose based on carbon nanotube-titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds. Sens. Actuators B Chem. 2022, 357, 131418. [Google Scholar]
- Hanaor, D.; Sorrell, C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar]
- Eddy, D.R.; Permana, M.D.; Sakti, L.K.; Sheha, G.A.N.; Solihudin; Hidayat, S.; Takei, T.; Kumada, N.; Rahayu, I. Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for Efficient Photocatalyst: Fabrication and Activity. Nanomaterials 2023, 13, 704. [Google Scholar] [CrossRef]
- Katun, M.M.; Kadzutu-Sithol, R.; Moloto, N.; Nyamupangedengu, C.; Gomes, C. Improving Thermal Stability and Hydrophobicity of Rutile-TiO2 Nanoparticles for Oil-Impregnated Paper Application. Energies 2021, 14, 7964. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Y.; Yang, W.; Li, Z.; Xiong, K. Effect of different crystalline phase of TiO2 on the catalytic activity of Ru catalysts in hydrogen evolution under acidic and alkaline media. Int. J. Hydrogen Energy 2024, 52 Pt 2, 302–310. [Google Scholar]
- Rathi, V.H.; Jeice, A.R.; Jayakumar, K. Green synthesis of Ag/CuO and Ag/ TiO2 nanoparticles for enhanced photocatalytic dye degradation, antibacterial, and antifungal properties. Appl. Surf. Sci. Adv. 2023, 18, 100476. [Google Scholar]
- Michalska, M.; Pavlovský, J.; Lemański, K.; Małecka, M.; Ptak, M.; Novák, V.; Kormunda, M.; Matějka, V. The effect of surface modification with Ag nanoparticles on 21 nm TiO2: Anatase/rutile material for application in photocatalysis. Mater. Today Chem. 2022, 26, 101123. [Google Scholar]
- Kim, K.D.; Han, D.N.; Lee, J.B.; Kim, H.T. Formation and characterization of Ag-deposited TiO2 nanoparticles by chemical reduction method. Scr. Mater. 2006, 54, 143–146. [Google Scholar] [CrossRef]
- Borrego Pérez, J.A.; Morales, E.R.; Paraguay Delgado, F.; Meza Avendaño, C.A.; Alonso Guzman, E.M.; Mathews, N.R. Ag nanoparticle dispersed TiO2 thin films by single step sol gel process: Evaluation of the physical properties and photocatalytic degradation. Vacuum 2023, 215, 112276. [Google Scholar]
- Albiter, E.; Valenzuela, M.A.; Alfaro, S.; Valverde-Aguilar, G.; Martínez-Pallares, F.M. Photocatalytic deposition of Ag nanoparticles on TiO2: Metal precursor effect on the structural and photoactivity properties. J. Saudi Chem. Soc. 2015, 19, 563–573. [Google Scholar] [CrossRef]
- Zarzzeka, C.; Goldoni, J.; do Rocio de Paula de Oliveira, J.; Lenzi, G.G.; Bagatini, M.D.; Colpini, L.M.S. Photocatalytic action of Ag/TiO2 nanoparticles to emerging pollutants degradation: A comprehensive review. Sustain. Chem. Environ. 2024, 8, 100177. [Google Scholar] [CrossRef]
- Radić, N.; Ilić, M.; Stojadinović, S.; Milić, J.; Avdalović, J.; Šaponjić, Z. Photocatalytically active Ag-doped TiO2 coatings developed by plasma electrolytic oxidation in the presence of colloidal Ag nanoparticles. J. Phys. Chem. Solids 2024, 188, 111918. [Google Scholar]
- Abdel-Fattah, E. Plasmonic ZnO-Au Nanocomposites: A Synergistic Approach to Enhanced Photocatalytic Activity through Nonthermal Plasma-Assisted Synthesis. Crystals 2024, 54, 890. [Google Scholar] [CrossRef]
- Abdel-Fattah, E.; Ogawa, D.; Nakamura, K. Nitrogen functionalization of MWCNTs in Ar-N2 dielectric barrier discharge–Gas ratio effect. Mater. Sci. Eng. B 2020, 261, 114680. [Google Scholar]
- Abdel-Fattah, E. Atmospheric pressure helium plasma jet and its applications to methylene blue degradation. J. Electrost. 2019, 101, 103360. [Google Scholar]
- Sun, D.; McLaughlan, J.; Zhang, L.; Falzon, B.G.; Mariotti, D.; Maguire, P.; Sun, D. Atmospheric Pressure Plasma-Synthesized Gold Nanoparticle/Carbon Nanotube Hybrids for Photothermal Conversion. Langmuir 2019, 35, 4577–4588. [Google Scholar] [PubMed]
- Richmonds, C.; Sankaran, R.M. Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl. Phys. Lett. 2008, 93, 131501. [Google Scholar]
- Abdel-Fattah, E. Surface and thermal characteristics relationship of atmospheric pressure plasma treated natural luffa fibers. Eur. Phys. J. D 2019, 73, 71. [Google Scholar] [CrossRef]
- Abdel-Fattah, E. Surface modifications of PET in argon atmospheric pressure plasma: Gas flow rate effect. Surf. Interface Anal. 2022, 54, 794–802. [Google Scholar] [CrossRef]
- Chen, K.; Saito, Y.; Takemura, H. Shirai. Physiochemistry of the plasma-electrolyte solution interface. Thin Solid Film. 2008, 516, 6688–6693. [Google Scholar]
- Hamed, N.K.A.; Ahmad, M.K.; Hairom, N.H.H.; Faridah, A.B.; Mamat, M.H.; Mohamed, A.; Suriani, A.B.; Nafarizal, N.; Fazli, F.I.M.; Mokhtar, S.M.; et al. Dependence of photocatalysis on electron trapping in Ag-doped flowerlike rutile-phase TiO2 film by facile hydrothermal method. Appl. Surf. Sci. 2020, 534, 147571. [Google Scholar] [CrossRef]
- Hazrat Ali, H.; Azad, A.; Khan, K.A.; Rahman, O.; Unesco, C.; Kumer, A. Analysis of Crystallographic Structures and Properties of Silver Nanoparticles Synthesized Using PKL Extract and Nanoscale Characterization Techniques. ACS Omega 2023, 8, 28133–28142. [Google Scholar]
- Sharma, A.; Negi, P.; Konwar, R.J.; Kumar, H.; Verma, Y.; Shailja; Sati, P.C.; Rajyaguru, B.; Dadhich, H.; Shah, N.A.; et al. Tailoring of structural, optical and electrical properties of anatase TiO2 via doping of cobalt and nitrogen ions. J. Mater. Sci. Technol. 2022, 111, 287–297. [Google Scholar] [CrossRef]
- Lan, T.; Tang, X.; Fultz, B. Phonon anharmonicity of rutile TiO2 studied by Raman spectrometry and molecular dynamics simulations. Phys. Rev. B 2012, 85, 094305. [Google Scholar]
- Ahmad, M.K.; Mokhtar, S.M.; Soon, C.F.; Nafarizal, N.; Suriani, A.B.; Mohamed, A.; Mamat, M.H.; Malek, M.F.; Shimomura, M.; Murakami, K. Raman investigation of rutile-phased TiO2 nanorods/nanoflowers with various reaction times using one step hydrothermal method. J. Mater. Sci. Mater. Electron. 2016, 27, 7920–7926. [Google Scholar]
- Pan, C.; Xu, J.; Yu, C.; Zhu, Y.; Zhu, M. Effects of oxygen vacancies on the photophysical and photochemical properties of TiO2. J. Phys. Chem. C 2009, 113, 19214–19219. [Google Scholar]
- Sankar, S.; Gopchandran, K.G. Rutile TiO2(101) based plasmonic nanostructures. Ceram. Int. 2013, 39, 1081–1086. [Google Scholar]
- Chen, J.; Song, W.; Hou, H.; Zhang, Y.; Jing, M.; Jia, X.; Ji, X. Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 6793–6801. [Google Scholar] [CrossRef]
- Wu, W.-Y.; Hsu, C.-F.; Wu, M.-J.; Chen, C.-N.; Huang, J.-J. Ag–TiO2 composite photoelectrode for dye-sensitized solar cell. Appl. Phys. A 2017, 123, 357. [Google Scholar]
- Jiang, Z.; Zhang, W.; Jin, L.; Yang, X.; Xu, F.; Zhu, J.; Huang, W. Direct XPS Evidence for Charge Transfer from a Reduced Rutile TiO2(110) Surface to Au Clusters. J. Phys. Chem. C. 2007, 111, 12434–12439. [Google Scholar]
- Zhang, H.; Wang, G.; Chen, D.; Lv, X.; Li, J. Tuning photoelectrochemical performances of Ag-TiO2 nanocomposites via reduction/oxidation of Ag. Chem. Mater. 2008, 20, 6543–6549. [Google Scholar]
- Tanabe, I.; Tatsuma, T. Plasmonic Manipulation of Color and Morphology of Single Silver Nanospheres. Nano Lett. 2012, 12, 5418. [Google Scholar] [PubMed]
- Zhu, X.; Han, S.; Zhu, D.; Chen, S.; Feng, W.; Kong, Q. Preparation and characterization of Ag modified rutile titanium dioxide and its photocatalytic activity under simulated solar light. Micro Nano Lett. 2019, 14, 757–760. [Google Scholar]
- Murphy, A.B. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cell 2007, 91, 1326. [Google Scholar]
- Solano, R.; Herrera, A.P. Cypermethrin elimination using Fe-TiO2 nanoparticles supported on coconut palm spathe in a solar flat plate photoreactor. Adv. Compos. Lett. 2020, 28, 2633366X20906164. [Google Scholar]
- Padmini, M.; Balaganapathi, T.; Thilakan, P. Mesoporous rutile TiO2: Synthesis, characterization and photocatalytic performance studies. Mater. Res. Bull. 2021, 144, 111480. [Google Scholar]
- Mali, S.S.; Shinde, P.S.; Betty, C.A.; Bhosale, P.N.; Lee, W.J.; Patil, P.S. Nanocoral architecture of TiO2 by hydrothermal process: Synthesis and characterization. Appl. Surf. Sci. 2011, 257, 9737–9746. [Google Scholar]
- Pawar, U.T.; Pawar, S.A.; Kim, J.-H.; Patil, P.S. Dye sensitized solar cells based on hydrothermally grown TiO2 nanostars over nanorods. Ceram. Int. 2016, 42, 8038. [Google Scholar]
- Foo, C.; Li, Y.; Lebedev, K.; Chen, T.; Day, S.; Tang, C.; Tsang, S.C.E. Characterization of oxygen defects and nitrogen impurities in TiO2 photocatalysts using variable-temperature X-ray powder diffraction. Nat. Commun. 2021, 12, 661. [Google Scholar]
- Hummel, R.E. Electrical Properties of Materials. In Understanding Materials Science; Springer: New York, NY, USA, 1998. [Google Scholar]
- Taha, T.A.; Azab, A.A. AC Conductivity and Dielectric Properties of Borotellurite Glass. J. Electron. Mater. 2016, 45, 5170–5177. [Google Scholar]
- Abdellatif, H.; Azab, A.A.; Moustafa, A.M. Dielectric Spectroscopy of Localized Electrical Charges in Ferrite Thin Film. J. Electron. Mater. 2018, 47, 378–384. [Google Scholar] [CrossRef]
- Krishnakumar, V.; Boobas, S.; Jayaprakash, J.; Rajaboopathi, M.; Han, B.; Louhi-Kultanen, M. Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light. J. Mater. Sci: Mater. Electron. 2016, 27, 7438–7447. [Google Scholar]
- Abdul Gafoor, A.; Musthafa, M.; Pradyumnan, P. AC Conductivity and Diffuse Reflectance Studies of Ag-TiO2 Nanoparticles. J. Electron. Mater. 2012, 41, 2387–2392. [Google Scholar]
- Azab, A.A.A.; Ward, A.A.; Mahmoud, G.M.; El-Hanafy, E.M.; El-Zahed, H.; Terra, F.S. Structural and dielectric properties of prepared PbS and PbTe nanomaterials. J. Semicond. 2018, 39, 2018. [Google Scholar]
- Duta, L.; Grumezescu, V. The Effect of Doping on the Electrical and Dielectric Properties of Hydroxyapatite for Medical Applications: From Powders to Thin Films. Materials 2024, 17, 640. [Google Scholar] [CrossRef]
- Gałązka, M.; Osiecka-Drewniak, N. Electric Conductivity and Electrode Polarization as Markers of Phase Transitions. Crystals 2022, 12, 1797. [Google Scholar] [CrossRef]
- Jebli, M.; Rayssi, C.; Dhahri, J.; Ben Henda, M.; Belmabroukb, H.; Bajahzar, A. Structural and morphological studies, and temperature/frequency dependence of electrical conductivity of Ba0.97La0.02Ti1−xNb4x/5O3 perovskite ceramics. RSC Adv. 2021, 11, 23664. [Google Scholar] [CrossRef]
- Megdiche, M.; Perrin-pellegrino, C.; Gargouri, M. Conduction mechanism study by overlapping large-polaron tunnelling model in SrNiP2O7 ceramic compound. J. Alloys Compd. 2014, 584, 209–215. [Google Scholar] [CrossRef]
- Ghosh, A. Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors. Phys. Rev. B Condens. Matter 1990, 41, 1479. [Google Scholar]
- Dai, J.; Meng, S.; Yang, C.; Lü, W.; Chen, X.; Yin, Y. Effect of Nano Silver Modification on the Dielectric Properties of Ag@TiO2/PVDF Composites. J. Wuhan Univ. Technol. Mat. Sci. Edit. 2021, 36, 303–310. [Google Scholar] [CrossRef]
- Hong, I.P.; Brun, C.; Pivetta, M.; Patthey, F.; Schneider, W.D. Coulomb blockade phenomena observed in supported metallic nanoislands. Front. Phys. 2013, 1, 13. [Google Scholar]
Sample | Crystal Size (nm) | Micro Strain e (×10−3) |
---|---|---|
R-TiO2 | 43.36 | 0.6433 |
R-TiO2 + Ag 0.3 wt.% | 69.29 | 0.505 |
R-TiO2 + Ag 1.5 wt.% | 85.19 | 0.499 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Fattah, E.M.; Azab, A.A. Plasmonic Rutile TiO2/Ag Nanocomposites Tailored via Nonthermal-Plasma-Assisted Synthesis: Enhanced Spectroscopic and Optical Properties with Tuned Electrical Behavior. J. Compos. Sci. 2025, 9, 156. https://doi.org/10.3390/jcs9040156
Abdel-Fattah EM, Azab AA. Plasmonic Rutile TiO2/Ag Nanocomposites Tailored via Nonthermal-Plasma-Assisted Synthesis: Enhanced Spectroscopic and Optical Properties with Tuned Electrical Behavior. Journal of Composites Science. 2025; 9(4):156. https://doi.org/10.3390/jcs9040156
Chicago/Turabian StyleAbdel-Fattah, Essam M., and Ali A. Azab. 2025. "Plasmonic Rutile TiO2/Ag Nanocomposites Tailored via Nonthermal-Plasma-Assisted Synthesis: Enhanced Spectroscopic and Optical Properties with Tuned Electrical Behavior" Journal of Composites Science 9, no. 4: 156. https://doi.org/10.3390/jcs9040156
APA StyleAbdel-Fattah, E. M., & Azab, A. A. (2025). Plasmonic Rutile TiO2/Ag Nanocomposites Tailored via Nonthermal-Plasma-Assisted Synthesis: Enhanced Spectroscopic and Optical Properties with Tuned Electrical Behavior. Journal of Composites Science, 9(4), 156. https://doi.org/10.3390/jcs9040156