Investigation of Constant Shear Rate and Sample Configuration for Shear Characterization of a UHMWPE Unidirectional Cross-Ply Material System
Abstract
1. Introduction
2. Materials and Methods
2.1. Determination of Shear Rate in Forming
2.2. Sample Size Variation
2.3. Constant Shear-Rate Testing
3. Results
3.1. Strain Rate Variation
3.2. Sample Size
3.3. Constant Shear-Rate
3.4. Finite Element Modeling Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, H.; Peng, X.; Du, T.; Chen, J. Forming of Thermoplastic Plain Woven Carbon Composites. J. Thermoplast. Compos. Mater. 2013, 28, 730–742. [Google Scholar] [CrossRef]
- Pham, X.-T.; Bates, P.J.; Chesney, A. Modeling of Thermoforming of Low-Density Glass Mat Thermoplastic. J. Reinf. Plast. Compos. 2005, 24, 287–298. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, B.; Xu, X.; Ye, J.; Liu, C. Simulation and Analysis of Process-Induced Distortions in Hemispherical Thermostamping for Unidirectional Thermoplastic Composites. Polym. Compos. 2018, 40, 1786–1800. [Google Scholar] [CrossRef]
- Hamdan, H.; Nadlene, R.; Nurfaizey, A.H.; Zin, M.H.; Fadzullah, S.H.S.M.; Rashidi, S.A. Simulation Analysis of Polyphenylene Sulfide Composite for Two-Folded Clip Panel by Using Aniform Software. Mater. Sci. Forum 2022, 1060, 43–49. [Google Scholar] [CrossRef]
- Atalay, O.; Öztürk, F. Effects of Gripper Location and Blank Geometry on the Thermoforming of a Carbon-Fiber Woven-Fabric/Polyphenylene Sulfide Composite Sheet. J. Thermoplast. Compos. Mater. 2022, 36, 2737–2756. [Google Scholar] [CrossRef]
- Han, P.; Butterfield, J.; Price, M.; Buchanan, S.; Murphy, A. Experimental Investigation of Thermoforming Carbon Fibre-Reinforced Polyphenylene Sulphide Composites. J. Thermoplast. Compos. Mater. 2013, 28, 529–547. [Google Scholar] [CrossRef]
- Rashid, B.; Razali, N.; Zakaria, M.S.; Ramlan, M.Z.H.; Hamdan, H.; Sharif, E.A.; Muhammad, N.; Rashidi, S.A. A Study on the Thermal Distribution of the Thermoforming Process for Polyphenylene Sulfite (Polyphenylene Sulfide) PPS Composites Towards Out of Autoclave Activity. Pertanika J. Sci. Technol. 2024, 32, 49–60. [Google Scholar] [CrossRef]
- Henning, F.; Kärger, L.; Dörr, D.; Schirmaier, F.J.; Seuffert, J.; Bernath, A. Fast processing and continuous simulation of automotive structural composite components. Compos. Sci. Technol. 2019, 171, 261–279. [Google Scholar] [CrossRef]
- White, K.D.; Krogh, C.; Sherwood, J.A. (Eds.) Investigation of shear characterization of a UHMWPE unidirectional cross-ply for finite element simulation of composite processing. In Proceedings of the AIP Conference Proceedings 2019, Vitoria-Gasteiz, Spain, 8–10 May 2019. [Google Scholar] [CrossRef]
- Abdiwi, F.; Harrison, P.G.; Guo, Z.; Potluri, P.; Yu, W.R. Measuring the Shear-Tension Coupling of Engineering Fabrics. AIP Conf. Proc. 2011, 1353, 889–894. [Google Scholar] [CrossRef]
- Abot, J.L.; Gabbai, R.D.; Harsley, K. Effect of Woven Fabric Architecture on Interlaminar Mechanical Response of Composite Materials: An Experimental Study. J. Reinf. Plast. Compos. 2011, 30, 2003–2014. [Google Scholar] [CrossRef]
- Bae, D.; Kim, S.; Lee, W.; Yi, J.W.; Um, M.K.; Seong, D.G. Experimental and Numerical Studies on Fiber Deformation and Formability in Thermoforming Process Using a Fast-Cure Carbon Prepreg: Effect of Stacking Sequence and Mold Geometry. Materials 2018, 11, 857. [Google Scholar] [CrossRef] [PubMed]
- Bel, S.; Boisse, P.; Dumont, F. Analyses of the Deformation Mechanisms of Non-Crimp Fabric Composite Reinforcements During Preforming. Appl. Compos. Mater. 2011, 19, 513–528. [Google Scholar] [CrossRef]
- Boisse, P.; Hamila, N.; Guzman-Maldonado, E.; Madeo, A.; Hivet, G.; dell’Isola, F. The Bias-Extension Test for the Analysis of in-Plane Shear Properties of Textile Composite Reinforcements and Prepregs: A Review. Int. J. Mater. Form. 2017, 10, 473–492. [Google Scholar] [CrossRef]
- Dridi, S.; Morestin, F.; Dogui, A. Use of Digital Image Correlation to Analyse the Shearing Deformation in Woven Fabric. Exp. Tech. 2011, 36, 46–52. [Google Scholar] [CrossRef]
- Gassoumi, M.; Roscoat SRd Casari, P.; Dumont, P.; Orgéas, L.; Jacquemin, F. Shear Behavior of Thermoformed Woven-Textile Thermoplastic Prepregs: An Analysis Combining Bias-Extension Test and X-Ray Microtomography. In Proceedings of the 20th International Esaform Conference on Material Forming: Esaform 2017, Dublin, Ireland, 26–28 April 2017. [Google Scholar] [CrossRef]
- Habboush, A.; Noor, S.; Shao, H.; Jiang, J.; Chen, N. Characterization and Analysis of Wrinkling Behavior of Glass Warp Knitted Non-Crimp Fabrics Based on Double-Dome Draping Geometry. J. Eng. Fibers Fabr. 2020, 15, 1558925020958521. [Google Scholar] [CrossRef]
- Hwang, S.F.; Yang, C.; Huang, S.-H. Effects of Thermoforming Parameters on Woven Carbon Fiber Thermoplastic Composites. Materials 2024, 17, 3932. [Google Scholar] [CrossRef]
- Kong, H.; Mouritz, A.P.; Paton, R. Tensile extension properties and deformation mechanisms of multiaxial non-crimp fabrics. Compos. Struct. 2004, 66, 249–259. [Google Scholar] [CrossRef]
- Lomov, S.V. 6—Deformability of textile performs in the manufacture of non-crimp fabric composites. In Non-Crimp Fabric Composites; Lomov, S.V., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 117–143, 144e. [Google Scholar] [CrossRef]
- Lomov, S.; Barburski, M.; Stoilova, T.; Verpoest, I.; Akkerman, R.; Loendersloot, R.; Thije, R. Carbon Composites Based on Multiaxial Multiply Stitched Preforms. Part 3: Biaxial Tension, Picture Frame and Compression Tests of the Preforms. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1188–1206. [Google Scholar] [CrossRef]
- Marasović, P.; Penava, Ž. Modelling the Stress-Strain Curve of Plane-Weave Fabric With Mathematical Models. Text. Leather Rev. 2022, 5, 374–391. [Google Scholar] [CrossRef]
- Quenzel, P.; Kröger, H.; Manin, B.; Khiêm, V.N.; Duong, T.X.; Gries, T.; Itskov, M.; Sauer, R.A. Material Characterisation of Biaxial Glass-Fibre Non-Crimp Fabrics as a Function of Ply Orientation, Stitch Pattern, Stitch Length and Stitch Tension. J. Compos. Mater. 2022, 56, 3971–3991. [Google Scholar] [CrossRef]
- Rothe, S.; Wendt, E.; Krzywinski, S.; Halász, M.; Bakonyi, P.; Tamás, P.; Bojtos, A. Investigation of Shear-Induced Deformation of Reinforcing Textiles by Optical Measurement Devices. Materials 2019, 12, 1029. [Google Scholar] [CrossRef] [PubMed]
- Rugg, K.L.; Cox, B.N. Deformation Mechanisms of Dry Textile Preforms Under Mixed Compressive and Shear Loading. J. Reinf. Plast. Compos. 2004, 23, 1425–1442. [Google Scholar] [CrossRef]
- Samir, D.; Hamid, S.A. Determination of the in-Plane Shear Rigidity Modulus of a Carbon Non-Crimp Fabric From Bias-Extension Data Test. J. Compos. Mater. 2013, 48, 2729–2736. [Google Scholar] [CrossRef]
- Shanbeh, M.; Johari, M.S.; Zarrebini, M.; Barburski, M.; Komisarczyk, A. Analysis of Shear Characteristics of Woven Fabrics and Their Interaction with Fabric Integrated Structural Factors. J. Eng. Fibers Fabr. 2019, 14, 1558925019867520. [Google Scholar] [CrossRef]
- Abbassi, F.; Elfaleh, I.; Mistou, S.; Zghal, A.; Fazzini, M.; Djilali, T. Experimental and Numerical Investigations of a Thermoplastic Composite (Carbon/Pps) Thermoforming. Struct. Control Health Monit. 2011, 18, 769–780. [Google Scholar] [CrossRef]
- Zhu, B.; Yu, T.X.; Teng, J.G.; Tao, X. Theoretical Modeling of Large Shear Deformation and Wrinkling of Plain Woven Composite. J. Compos. Mater. 2008, 43, 125–138. [Google Scholar] [CrossRef]
- Boisse, P.; Akkerman, R.; Carlone, P.; Kärger, L.; Lomov, S.V.; Sherwood, J.A. Advances in composite forming through 25 years of ESAFORM. Int. J. Mater. Form. 2022, 15, 39. [Google Scholar] [CrossRef]
- Lee, J.S.; Hong, S.J.; Yu, W.-R.; Kang, T.J. The effect of blank holder force on the stamp forming behavior of non-crimp fabric with a chain stitch. Compos. Sci. Technol. 2007, 67, 357–366. [Google Scholar] [CrossRef]
- Tanaka, K.; Kanazawa, K.; Enoki, S.; Katayama, T. Formability Evaluation of Non-Crimp Carbon Fabric by Non-Contact 3D Deformation Measurement System. Key Eng. Mater. 2012, 525–526, 493–496. [Google Scholar] [CrossRef]
- Boisse, P.; Zouari, B.; Daniel, J.-L. Importance of in-Plane Shear Rigidity in Finite Element Analyses of Woven Fabric Composite Preforming. Compos. Part A Appl. Sci. Manuf. 2006, 37, 2201–2212. [Google Scholar] [CrossRef]
- Boisse, P.; Buet, K.; Gasser, A.; Launay, J. Meso/Macro-Mechanical Behaviour of Textile Reinforcements for Thin Composites. Compos. Sci. Technol. 2001, 61, 395–401. [Google Scholar] [CrossRef]
- Launay, J.; Hivet, G.; Duong, A.V.; Boisse, P. Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos. Sci. Technol. 2008, 68, 506–515. [Google Scholar] [CrossRef]
- Harrison, P.; Clifford, M.J.; Long, A.C. Shear characterisation of viscous woven textile composites: A comparison between picture frame and bias extension experiments. Compos. Sci. Technol. 2004, 64, 1453–1465. [Google Scholar] [CrossRef]
- Harrison, P.; Gomes, R.; Curado-Correia, N. Press forming a 0/90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry. Compos. Part A Appl. Sci. Manuf. 2013, 54, 56–69. [Google Scholar] [CrossRef]
- Harrison, P.; Wiggers, J.; Long, A. Normalization of shear test data for rate-independent compressible fabrics. J. Compos. Mater. 2008, 42, 2315–2344. [Google Scholar] [CrossRef]
- Dangora, L.M.; Mitchell, C.J.; Sherwood, J.A. Predictive model for the detection of out-of-plane defects formed during textile-composite manufacture. Compos. Part A Appl. Sci. Manuf. 2015, 78, 102–112. [Google Scholar] [CrossRef]
- Kawabata, S.; Niwa, M.; Kawai, H. 3—The finite-deformation theory of plain-weave fabrics part I: The biaxial-deformation theory. J. Text. Inst. 1973, 64, 21–46. [Google Scholar] [CrossRef]
- Kawabata, S.; Niwa, M.; Kawai, H. 5—The finite-deformation theory of plainweave fabrics part III: The shear deformation theory. J. Text. Inst. 1973, 64, 62–85. [Google Scholar] [CrossRef]
- Lebrun, G.; Bureau, M.N.; Denault, J. Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics. Compos. Struct. 2003, 61, 341–352. [Google Scholar] [CrossRef]
- Lomov, S.V.; Stoilova, T.; Verpoest, I. (Eds.) Shear of woven fabrics: Theoretical model, numerical experiments and full field strain measurements. In Proceedings of the ESAFORM-2004, 7th International Conference on Material Forming, Trondheim, Norway, 28–30 April 2004. [Google Scholar]
- Long, A.; Rudd, C.; Blagdon, M.; Smith, P. Characterizing the processing and performance of aligned reinforcements during preform manufacture. Compos. Part A Appl. Sci. Manuf. 1996, 27, 247–253. [Google Scholar] [CrossRef]
- McGuinness, G.B.; Bradaigh, C.M.O. Characterisation of thermoplastic composite melts in rhombus-shear. Compos. Part A Appl. Sci. Manuf. 1998, 29, 509–518. [Google Scholar] [CrossRef]
- Peng, X.Q.; Cao, J.; Chen, J.; Xue, P.; Lussier, D.S.; Liu, L. Experimental and numerical analysis on normalization of picture frame tests for composite materials. Compos. Sci. Technol. 2004, 64, 11–21. [Google Scholar] [CrossRef]
- Potluri, P.; Ciurezu, D.P.; Ramgulam, R. Measurement of meso-scale shear deformations for modelling textile composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 303–314. [Google Scholar] [CrossRef]
- Potter, K. Bias extension measurements on cross-plied unidirectional prepreg. Compos. Part A Appl. Sci. Manuf. 2002, 33, 627–634. [Google Scholar] [CrossRef]
- Prodromou, A.G.; Chen, J. Relationship between shear angle and wrinkling of textile composite preforms. Compos. Part A Appl. Sci. Manuf. 1997, 28A, 491–503. [Google Scholar] [CrossRef]
- Sharma, S.B.; Sutcliffe, M.P.F. A simplified finite element model for draping of woven material. Compos. Part A Appl. Sci. Manuf. 2004, 35, 637–643. [Google Scholar] [CrossRef]
- Wang, J.; Page, J.; Paton, R. Experimental investigation of the draping properties of reinforcement fabrics. Compos. Sci. Technol. 1998, 58, 229–237. [Google Scholar] [CrossRef]
- Cao, J.; Akkerman, R.; Boisse, P.; Chen, J.; Cheng, H.; de Graaf, E.; Gorczyca, J.; Harrison, P.; Hivet, G.; Launay, J.; et al. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1037–1053. [Google Scholar] [CrossRef]
- Dangora, L.M.; Mitchell, C.J.; Sherwood, J.; Parker, J.C. Deep-Drawing Forming Trials on a Cross-Ply Thermoplastic Lamina for Helmet Preform Manufacture. J. Manuf. Sci. Eng. 2017, 139, 031009. [Google Scholar] [CrossRef]
- Crookston, J.; Long, A.C.; Jones, I.A. A Summary Review of Mechanical Properties Prediction Methods for Textile Reinforced Polymer Composites. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2005, 219, 91–109. [Google Scholar] [CrossRef]
- Cherouat, A.; Billoët, J.L. Mechanical and numerical modelling of composite manufacturing processes: Deep-drawing and laying-up of thin pre-impregnated woven fabrics. J. Mater. Process. Technol. 2001, 118, 460–471. [Google Scholar] [CrossRef]
- Nguyen, M.; Herszberg, I.; Paton, R. The shear properties of woven carbon fabric. Compos. Struct. 1999, 47, 767–779. [Google Scholar] [CrossRef]
- Bassett, R.; Postle, R.; Pan, N. Experimental Methods for Measuring Fabric Mechanical Properties: A Review and Analysis. Text. Res. J. 1999, 69, 866–875. [Google Scholar] [CrossRef]
- Boisse, P.; Wang, P.; Hamila, N.; Lemeur, K.; Rusanov, A.; Guzman, E.; Ferretti, M.; D’AGostino, M.; Madeo, A. Bias Extension Test for in-Plane Shear Properties During Forming—Use at High Temperature and Limits of the Test. Key Eng. Mater. 2015, 651–653, 369–374. [Google Scholar] [CrossRef]
- Brands, D.; Wijskamp, S.; Grouve, W.J.B.; Akkerman, R. In-Plane Shear Characterization of Unidirectional Fiber Reinforced Thermoplastic Tape Using the Bias Extension Method. Front. Mater. 2022, 9, 863952. [Google Scholar] [CrossRef]
- Harrison, P.; Alvarez, M.F.; Anderson, D. Towards comprehensive characterisation and modelling of the forming and wrinkling mechanics of engineering fabrics. Int. J. Solids Struct. 2018, 154, 2–18. [Google Scholar] [CrossRef]
- Üren, N.; Öner, E.; Okur, A. A Novel Approach for Precise Determination of in-Plane Shear Behavior of Woven Fabrics. Text. Res. J. 2016, 87, 1335–1348. [Google Scholar] [CrossRef]
- Wang, P.; Hamila, N.; Pineau, P.; Boisse, P. Thermomechanical Analysis of Thermoplastic Composite Prepregs Using Bias-Extension Test. J. Thermoplast. Compos. Mater. 2012, 27, 679–698. [Google Scholar] [CrossRef]
- Cuomo, M.; dell’Isola, F.; Greco, L. Simplified analysis of a generalized bias test for fabrics with two families of inextensible fibres. Z. Für Angew. Math. Und Phys. 2016, 67, 61. [Google Scholar] [CrossRef]
- Martin, C.J.; Maes, V.K.; McMahon, T.; Kratz, J. The Role of Bias Extension Testing to Guide Forming of Non-Crimp Fabrics. Front. Mater. 2022, 9, 825830. [Google Scholar] [CrossRef]
- Krogh, C.; White, K.D.; Sabato, A.; Sherwood, J.A. Picture-frame testing of woven prepreg fabric: An investigation of sample geometry and shear angle acquisition. Int. J. Mater. Form. 2019, 13, 341–353. [Google Scholar] [CrossRef]
- Liu, L.; Chen, J.; Gorczyca, J.L.; Sherwood, J.A. Modeling of friction and shear in thermostamping of composites—Part II. J. Compos. Mater. 2004, 38, 1931–1947. [Google Scholar] [CrossRef]
- Lussier, D.; Chen, J. Material characterization of woven fabrics for thermoforming of composites. J. Thermoplast. Compos. Mater. 2002, 15, 497–509. [Google Scholar] [CrossRef]
- Milani, A.; Nemes, J.; Lebrun, G.; Bureau, M. A comparative analysis of a modified picture frame test for characterization of woven fabrics. Polym. Compos. 2010, 31, 561–568. [Google Scholar] [CrossRef]
- Öztürk, F. Mechanical Characterization of a Twill Weave Carbon Fabric for Macro-Scale Forming Simulation. Res. Dev. Mater. Sci. 2022, 18, 2033–2043. [Google Scholar] [CrossRef]
- Willems, A.; Lomov, S.V.; Verpoest, I.; Vandepitte, D. (Eds.) Picture frame shear tests on woven textile composite reinforcements with controlled pretension. In Proceedings of the 10th Esaform Conference on Material Forming, Zaragoza, Spain, 18–20 April 2007. [Google Scholar] [CrossRef]
- Chen, Q.; Boisse, P.; Park, C.H.; Saouab, A.; Bréard, J. Intra/inter-ply shear behaviors of continuous fiber reinforced thermoplastic composites in thermoforming processes. Compos. Struct. 2011, 93, 1692–1703. [Google Scholar] [CrossRef]
- Guzman-Maldonado, E.; Hamila, N.; Naouar, N.; Moulin, G.; Boisse, P. Simulation of thermoplastic prepreg thermoforming based on a visco-hyperelastic model and a thermal homogenization. Mater. Des. 2016, 93, 431–442. [Google Scholar] [CrossRef]
- Jauffrès, D.; Sherwood, J.A.; Morris, C.; Chen, J. Discrete mesoscopic modeling for the simulation of woven-fabric reinforcement forming. Int. J. Mater. Form. 2010, 3, S1205–S1216. [Google Scholar] [CrossRef]
- Lomov, S.V.; Belov, E.; Bischoff, T.; Ghosh, S.B.; Chi, T.T.; Verpoest, I. Carbon composites based on multiaxial multiply stitched preforms. Part 1: Geometry of the preform. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1171–1183. [Google Scholar] [CrossRef]
- Mei, M.; Huang, J.; Yu, S.; Zeng, T.; He, Y.; Wei, K. Shear deformation characterization and normalized method of tricot-stitched unidirectional non-crimp fabric. Compos. Sci. Technol. 2024, 246, 110391. [Google Scholar] [CrossRef]
- Härtel, F.; Harrison, P.G. Evaluation of Normalisation Methods for Uniaxial Bias Extension Tests on Engineering Fabrics. Compos. Part A Appl. Sci. Manuf. 2014, 67, 61–69. [Google Scholar] [CrossRef]
- Dangora, L.M.; Hansen, C.J.; Mitchell, C.J.; Sherwood, J.A.; Parker, J.C. Challenges associated with shear characterization of a cross-ply thermoplastic lamina using picture frame tests. Compos. Part A Appl. Sci. Manuf. 2015, 78, 181–190. [Google Scholar] [CrossRef]
- Hsiao, S.-W.; Kikuchi, N. Numerical analysis and optimal design of composite thermoforming process. Comput. Methods Appl. Mech. Eng. 1999, 177, 1–34. [Google Scholar] [CrossRef]
- Skordos, A.A.; Aceves, C.M.; Sutcliffe, M.P. A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1318–1330. [Google Scholar] [CrossRef]
- Boubaker, B.B.; Haussy, B.; Ganghoffer, J. Discrete models of woven structures: Macroscopic approach. Compos. Part B Eng. 2007, 38, 498–505. [Google Scholar] [CrossRef]
- Lin, H.; Wang, J.; Long, A.; Clifford, M.; Harrison, P. Predictive modelling for optimization of textile composite forming. Compos. Sci. Technol. 2007, 67, 3242–32452. [Google Scholar] [CrossRef]
- Pickett, A.K.; Creech, G.; de Luca, P. Simplified and advanced simulation methods for prediction of fabric draping. Rev. Eur. Des Eléments Finis 2005, 14, 677–691. [Google Scholar] [CrossRef]
- Badel, P.; Vidal-Sallé, E.; Boisse, P. Computational determination of in-plane shear mechanical behaviour of textile composite reinforcements. Comput. Mater. Sci. 2007, 40, 439–448. [Google Scholar] [CrossRef]
- Härtel, F.; Böhler, P.; Middendorf, P. An Integral Mesoscopic Material Characterization Approach. Key Eng. Mater. 2014, 611–612, 280–291. [Google Scholar] [CrossRef]
- Misra, R.K.; Dixit, A.; Mali, H.S. Finite Element (FE) Shear Modeling of Woven Fabric Textile Composite. Procedia Mater. Sci. 2014, 6, 1344–1350. [Google Scholar] [CrossRef]
- Jauffrès, D.; Morris, C.D.; Sherwood, J.A.; Chen, J. Simulation of the thermostamping of woven composites: Mesoscopic modelling using explicit fea codes. Int. J. Mater. Form. 2009, 2, 173. [Google Scholar] [CrossRef]
- Dangora, L.M.; Mitchell, C.; White, K.D.; Sherwood, J.A.; Parker, J.C. Characterization of temperature-dependent tensile and flexural rigidities of a cross-ply thermoplastic lamina with implementation into a forming model. Int. J. Mater. Form. 2018, 11, 43–52. [Google Scholar] [CrossRef]
- Morris, C.D.; Dangora, L.; Sherwood, J. (Eds.) Using LS-DYNA to simulate the thermoforming of woven-fabric reinforced composites. In Proceedings of the 13th International LS-DYNA Users Conference, Dearborn, MI, USA, 8–10 June 2014. [Google Scholar]
- Yeager, M.; Cline, J.; White, K.; Bogetti, T.; Sherwood, J. Characterization and Modeling of the In-Plane Shear Deformation in Ultra-High Molecular Weight Polyethylene (UHMWPE) Composites. 2019. Available online: https://apps.dtic.mil/sti/pdfs/AD1080467.pdf (accessed on 30 November 2025).
- Chen, J.; Niezrecki, C.; Sherwood, J.; Avitabile, P.; Rumsey, M.; Hughes, S.; Nolet, S. Effect of Manufacturing-Induced Defects on Reliability of Composite Wind Turbine Blades; Report No.: Final Report United States GFO English; University of Massachusetts Lowell: Lowell, MA, USA, 2012. [Google Scholar]
- Ghazimoradi, M.; Carvelli, V.; Naouar, N.; Boisse, P. Experimental Measurements and Numerical Modelling of the Mechanical Behaviour of a Glass Plain Weave Composite Reinforcement. J. Reinf. Plast. Compos. 2019, 39, 45–59. [Google Scholar] [CrossRef]
- Schafer, B.W. Capabilities and Limitations of Pure-Shear Based Macroscopic Forming Simulations for 0°/90° Biaxial Non-Crimp Fabrics. Mater. Res. Proc. 2025, 54, 554–563. [Google Scholar] [CrossRef]
- Kärger, L.; Galkin, S.; Kunze, E.; Gude, Μ.; Schafer, B.W. Prediction of Forming Effects in UD-NCF by Macroscopic Forming Simulation—Capabilities and Limitations. In Proceedings of the 24th International Conference on Material Forming, Liège, Belgium, 14–16 April 2021. [Google Scholar] [CrossRef]
- Labanieh, A.R.; Garnier, C.; Ouagne, P.; Dalverny, O.; Soulat, D. Intra-ply yarn sliding defect in hemisphere preforming of a woven preform. Compos. Part A Appl. Sci. Manuf. 2018, 107, 432–446. [Google Scholar] [CrossRef]
- Cline, J.; Yeager, M.; Bogetti, T. Determination of In-Plane Shear Properties of Ultra-High-Molecular-Weight Polyethylene (UHMWPE) Composites for Input into a Thermoforming Model; CCDC Army Research Laboratory Aberdeen Proving Ground United States: Adelphi, MD, USA, 2019. [Google Scholar]
- White, K.; Sherwood, J. (Eds.) Characterization and modeling of a highly-oriented thin film for composite forming. In Proceedings of the 21st International Esaform Conference on Material Forming: Esaform 2018, Palermo, Italy, 23–25 April 2018; AIP Publishing LLC: Melville, NY, USA, 2018. [Google Scholar]


















| Sample | Gage Side Length | Ratio of Arm Area/Total Area |
|---|---|---|
| a | 125 mm | 0.6 |
| b | 100 mm | 0.7 |
| c | 75 mm | 0.8 |
| Material System | Temperature (°C) | Shear Stiffness (MPa) | Tensile Modulus (MPa) |
|---|---|---|---|
| Dyneema HB210 | 120 | 13,222 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, K.D.; Sherwood, J.A. Investigation of Constant Shear Rate and Sample Configuration for Shear Characterization of a UHMWPE Unidirectional Cross-Ply Material System. J. Compos. Sci. 2025, 9, 685. https://doi.org/10.3390/jcs9120685
White KD, Sherwood JA. Investigation of Constant Shear Rate and Sample Configuration for Shear Characterization of a UHMWPE Unidirectional Cross-Ply Material System. Journal of Composites Science. 2025; 9(12):685. https://doi.org/10.3390/jcs9120685
Chicago/Turabian StyleWhite, Kari D., and James A. Sherwood. 2025. "Investigation of Constant Shear Rate and Sample Configuration for Shear Characterization of a UHMWPE Unidirectional Cross-Ply Material System" Journal of Composites Science 9, no. 12: 685. https://doi.org/10.3390/jcs9120685
APA StyleWhite, K. D., & Sherwood, J. A. (2025). Investigation of Constant Shear Rate and Sample Configuration for Shear Characterization of a UHMWPE Unidirectional Cross-Ply Material System. Journal of Composites Science, 9(12), 685. https://doi.org/10.3390/jcs9120685

