Comparison of Compressive Properties of 3D-Printed Triply Periodic Minimal Surfaces and Honeycomb Lattice Structures
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Sizing Process
2.2. Design Process
2.3. Simulation Configuration
3. Experiments
3.1. SLA Printing Process
3.2. Resolution Testing
3.3. Compression Testing
4. Results and Discussion
4.1. Simulation Results
4.2. Compression Testing Results
4.3. Digital Image Correlation Comparisons
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pan, C.; Han, Y.; Lu, J. Design and optimization of lattice structures: A review. Appl. Sci. 2020, 10, 6374. [Google Scholar] [CrossRef]
- Helou, M.; Kara, S. Design, analysis and manufacturing of lattice structures: An overview. Int. J. Comput. Integr. Manuf. 2018, 31, 243–261. [Google Scholar] [CrossRef]
- Alhembar, A.; Alagha, A.N.; Naji, M.M.; Sheikh-Ahmad, J.; Jarrar, F. Recent advancements in design optimization of lattice–structured materials. Adv. Eng. Mater. 2023, 25, 2201780. [Google Scholar] [CrossRef]
- Nagesha, B.; Dhinakaran, V.; Shree, M.V.; Kumar, K.M.; Chalawadi, D.; Sathish, T. Review on characterization and impacts of the lattice structure in additive manufacturing. Mater. Today Proc. 2020, 21, 916–919. [Google Scholar] [CrossRef]
- Tao, W.; Leu, M.C. Design of lattice structure for additive manufacturing. In Proceedings of the 2016 International Symposium on Flexible Automation (ISFA), Cleveland, OH, USA, 1–3 August 2016; IEEE: New York, NY, USA, 2016. [Google Scholar]
- Tamburrino, F.; Graziosi, S.; Bordegoni, M. The design process of additively manufactured mesoscale lattice structures: A review. J. Comput. Inf. Sci. Eng. 2018, 18, 040801. [Google Scholar] [CrossRef]
- Liu, R.; Chen, W.; Zhao, J. A review on factors affecting the mechanical properties of additively-manufactured lattice structures. J. Mater. Eng. Perform. 2024, 33, 4685–4711. [Google Scholar] [CrossRef]
- Marin, F.; de Souza, A.F.; Mikowski, A.; Fontanella, L.H.G.; Soares, P.; de Lacalle, L.N.L. Energy density effect on the interface zone in parts manufactured by laser powder bed fusion on machined bases. Int. J. Precis. Eng. Manuf. Green Technol. 2023, 10, 905–923. [Google Scholar] [CrossRef]
- González-Barrio, H.; Calleja-Ochoa, A.; de Lacalle, L.N.L.; Lamikiz, A. Hybrid manufacturing of complex components: Full methodology including laser metal deposition (LMD) module development, cladding geometry estimation and case study validation. Mech. Syst. Signal Process. 2022, 179, 109337. [Google Scholar] [CrossRef]
- Bai, Y.; Yu, K.; Zhao, J.; Zhao, R. Experimental and simulation investigation of temperature effects on modal characteristics of composite honeycomb structure. Compos. Struct. 2018, 201, 816–827. [Google Scholar] [CrossRef]
- Wei, X.; Xiong, J.; Wang, J.; Xu, W. New advances in fiber-reinforced composite honeycomb materials. Sci. China Technol. Sci. 2020, 63, 1348–1370. [Google Scholar] [CrossRef]
- Rupani, S.V.; Jani, S.S.; Acharya, G. Design, modelling and manufacturing aspects of honeycomb sandwich structures: A review. IJSDR 2017, 2. [Google Scholar]
- Hassan, H.Z.; Saeed, N.M. Advancements and applications of lightweight structures: A comprehensive review. Discov. Civ. Eng. 2024, 1, 47. [Google Scholar] [CrossRef]
- Herrmann, C.; Dewulf, W.; Hauschild, M.; Kaluza, A.; Kara, S.; Skerlos, S. Life cycle engineering of lightweight structures. CIRP Ann. 2018, 67, 651–672. [Google Scholar] [CrossRef]
- Ahmad, A. Study on the Benefits of Lattice Structures Within the Framework of High-Performance Structural Design: A Case Study; Università degli Studi di Roma La Sapienza: Roma, Italy, 2024. [Google Scholar]
- Nazzi, F. The hexagonal shape of the honeycomb cells depends on the construction behavior of bees. Sci. Rep. 2016, 6, 28341. [Google Scholar] [CrossRef]
- Chandrasekaran, N.K.; Arunachalam, V. State-of-the-art review on honeycomb sandwich composite structures with an emphasis on filler materials. Polym. Compos. 2021, 42, 5011–5020. [Google Scholar] [CrossRef]
- Guo, X.; Ding, J.; Li, X.; Qu, S.; Fuh, J.Y.H.; Lu, W.F.; Song, X.; Zhai, W. Interpenetrating phase composites with 3D printed triply periodic minimal surface (TPMS) lattice structures. Compos. Part B Eng. 2023, 248, 110351. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Al-Rub, R.K.A. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Adv. Eng. Mater. 2019, 21, 1900524. [Google Scholar] [CrossRef]
- Calleja-Ochoa, A.; Gonzalez-Barrio, H.; de Lacalle, N.L.; Martínez, S.; Albizuri, J.; Lamikiz, A. A new approach in the design of microstructured ultralight components to achieve maximum functional performance. Materials 2021, 14, 1588. [Google Scholar] [CrossRef]
- Pérez-Ruiz, J.D.; de Lacalle, L.N.L.; Velilla-Díaz, W.; Mesa, J.A.; Gómez, G.; Maury, H.; Urbikain, G.; Gonzalez, H. Evaluating the feasibility of using crystalline patterns induced by PBF-LB to predict strength enhancing orientations. Mater. Des. 2025, 254, 114006. [Google Scholar] [CrossRef]
- Han, L.; Che, S. An Overview of Materials with Triply Periodic Minimal Surfaces and Related Geometry: From Biological Structures to Self–Assembled Systems. Adv. Mater. 2018, 30, e1705708. [Google Scholar] [CrossRef]
- Singh, G. Exploring the Evolution, Applications, Materials, and Sustainability of 3D Printing Technology in the Manufacturing Sector. Int. J. Innov. Res. Sci. Eng. 2024, 10, 8. [Google Scholar]
- Billings, C.; Siddique, R.; Liu, Y. Photocurable polymer-based 3D printing: Advanced flexible strain sensors for human kinematics monitoring. Polymers 2023, 15, 4170. [Google Scholar] [CrossRef] [PubMed]
- Billings, C.; Siddique, R.; Sherwood, B.; Hall, J.; Liu, Y. Additive manufacturing and characterization of sustainable wood fiber-reinforced green composites. J. Compos. Sci. 2023, 7, 489. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Liu, Y.; Raman, S.; Siddique, Z. Digital Twins in Additive Manufacturing: A Systematic Review. arXiv 2024, arXiv:2409.00877. [Google Scholar] [CrossRef]
- Villa, R.; Billings, C.; Siddique, Z.; Liu, Y. A Look at Two Nuisance Process Hurdles Encountered by New Laser Powder Bed Fusion Operators Printing Ti6Al4V. J. Mater. Eng. Perform. 2025, 34, 21941–21948. [Google Scholar] [CrossRef]
- Villa, R.; Billings, C.; Siddique, Z.; Liu, Y. Microstructural Characterization of Stitched Zones in Ti6Al4V Printed via Multi-laser Powder Bed Fusion and Using Three Stress Relief Temperatures. Metallogr. Microstruct. Anal. 2025, 14, 135–150. [Google Scholar] [CrossRef]
- Pérez-Ruiz, J.; González-Barrio, H.; Sanz-Calle, M.; Gómez-Escudero, G.; Munoa, J.; de Lacalle, L. Machining stability improvement in LPBF printed components through stiffening by crystallographic texture control. CIRP Ann. 2023, 72, 141–144. [Google Scholar] [CrossRef]
- Ahn, S.H.; Montero, M.; Odell, D.; Roundy, S.; Wright, P.K. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 2002, 8, 248–257. [Google Scholar] [CrossRef]
- Villa, R.; Liu, Y.; Siddique, Z. Review of defects and their sources in as-built Ti6Al4V manufactured via powder bed fusion. Int. J. Adv. Manuf. Technol. 2024, 132, 4105–4134. [Google Scholar] [CrossRef]
- De Leon, E.; Riensche, A.; Bevans, B.D.; Billings, C.; Siddique, Z.; Liu, Y. A Review of Modeling, Simulation, and Process Qualification of Additively Manufactured Metal Components via the Laser Powder Bed Fusion Method. J. Manuf. Mater. Process. 2025, 9, 22. [Google Scholar] [CrossRef]
- Saseendran, S.; Wysocki, M.; Varna, J. Cure-state dependent viscoelastic Poisson’s ratio of LY5052 epoxy resin. Adv. Manuf. Polym. Compos. Sci. 2017, 3, 92–100. [Google Scholar] [CrossRef]
- Sherwood, B.; Billings, C.; Liu, Y. Parametric Modeling of Lattice Structures for Manufacturing via Masked Stereolithography Apparatus. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Portland, OR, USA, 17–21 November 2024. [Google Scholar]
- ASTM D695-23; Standard Test Method for Compressive Properties of Rigid Plastics. ASTM International: West Conshohocken, PA, USA, 2023.









| Resin Density | 1.13 [] |
| Tensile Strength | 36–50 MPa |
| Elongation at Break | 7–14% |
| Lattice | Strength (N) | Lattice Density [] | Strength-to-Density Density [] |
|---|---|---|---|
| Primitive | 600 | 107.015 | 5.607 |
| Gyroid | 1000 | 137.926 | 7.250 |
| Diamond | 45 | 87.740 | 0.513 |
| Honeycomb Axial | 3750 | 115.651 | 32.425 |
| Honeycomb Transverse | 110 | 116.883 | 0.941 |
| Lattice | Lattice Strength (N) | Lattice Density [] | Strength-to-Density Density [] |
|---|---|---|---|
| Gyroid | 785.025 | 137.926 | 5.692 |
| Primitive | 554.566 | 107.015 | 5.182 |
| Honeycomb Axial | 3023.588 | 115.651 | 26.144 |
| Honeycomb Transverse | 117.815 | 116.883 | 1.008 |
| Lattice | Simulation Ratio [] | Testing Ratio [] |
|---|---|---|
| Primitive | 5.607 | 5.182 |
| Gyroid | 7.250 | 5.692 |
| Honeycomb Axial | 32.425 | 26.144 |
| Honeycomb Transverse | 0.941 | 1.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, J.; Hall, J.; Billings, C.; Liu, Y. Comparison of Compressive Properties of 3D-Printed Triply Periodic Minimal Surfaces and Honeycomb Lattice Structures. J. Compos. Sci. 2025, 9, 586. https://doi.org/10.3390/jcs9110586
Wagner J, Hall J, Billings C, Liu Y. Comparison of Compressive Properties of 3D-Printed Triply Periodic Minimal Surfaces and Honeycomb Lattice Structures. Journal of Composites Science. 2025; 9(11):586. https://doi.org/10.3390/jcs9110586
Chicago/Turabian StyleWagner, Julia, Joshua Hall, Christopher Billings, and Yingtao Liu. 2025. "Comparison of Compressive Properties of 3D-Printed Triply Periodic Minimal Surfaces and Honeycomb Lattice Structures" Journal of Composites Science 9, no. 11: 586. https://doi.org/10.3390/jcs9110586
APA StyleWagner, J., Hall, J., Billings, C., & Liu, Y. (2025). Comparison of Compressive Properties of 3D-Printed Triply Periodic Minimal Surfaces and Honeycomb Lattice Structures. Journal of Composites Science, 9(11), 586. https://doi.org/10.3390/jcs9110586

