Developing Coastal Resilience to Climate Change in Panama Through Sustainable Concrete Applications
Abstract
1. Introduction
- Which areas in Panama are vulnerable to the effects of climate change?
 - What concrete or cement-based elements or structures are used/required for coastal resilience?
 - What “sustainable” (lower impact) concrete measures currently exist, and which can be implemented?
 - Are there “sustainable” concretes already used in Panama?
 - What other solutions can be implemented as a complement to concrete or cement-based elements or structures for coastal resilience?
 
2. Methodology
2.1. Study Area
2.2. Identification of Vulnerable Areas in Panama
2.3. Bibliometric Analysis
2.4. Literature Review on Sustainable Concrete
2.5. Identification of Concrete Elements and Structures Used on Coasts
2.6. Strengths, Weaknesses, Opportunities, and Threats (SWOT) Analysis
3. Results
3.1. Vulnerability to Climate Change in Panama
3.1.1. Sea Level Rise
3.1.2. Floods
3.1.3. Strong Winds
3.1.4. Landslides
3.2. Concrete Elements and Structures for Coastal Resilience
3.2.1. Coastal Protection Structures
3.2.2. Flood Control and Flood-Resistant Elements and Structures
3.2.3. Extreme Event Mitigation Structures
3.2.4. Landslide Mitigation Structures
3.2.5. Cases of Mechanisms Adopted in Panama
3.3. Sustainable Concrete
3.3.1. International Sustainable Concrete Alternatives
3.3.2. Sustainable Concrete Alternatives in Panama
Vertua Concrete
Greentec
Argos Pozzolan
Environmental Product Declarations (EPDs)
Current Regulations for Concrete Production in Panama
Socioeconomic-Focused SWOT on Sustainable Concrete
3.4. Nature-Based Solutions as a Complement to Cement-Based Solutions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matthews, J.B.R. Annex I: Glossary. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., Gomis, M., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T., Eds.; IPCC: Cambridge, UK; New York, NY, USA, 2018; pp. 541–562. [Google Scholar]
 - Stamatopoulos, E.; Forouli, A.; Stoian, D.; Kouloukakis, P.; Sarmas, E.; Marinakis, V. An Adaptive Framework for Assessing Climate Resilience in Buildings. Build. Environ. 2024, 264, 111869. [Google Scholar] [CrossRef]
 - World Meteorological Organization. State of the Global Climate; World Meteorological Organization: Geneva, Switzerland, 2024; ISBN 978-92-63-11347-4. [Google Scholar]
 - Akhtar, A.Y.; Tsang, H.-H. A Comparative Life Cycle Assessment of Recycled Tire Rubber Applications in Sustainable Earthquake-Resistant Construction. Resour. Conserv. Recycl. 2024, 211, 107860. [Google Scholar] [CrossRef]
 - Barbhuiya, S.; Das, B.B.; Adak, D. A Comprehensive Review on Integrating Sustainable Practices and Circular Economy Principles in Concrete Industry. J. Environ. Manag. 2024, 370, 122702. [Google Scholar] [CrossRef] [PubMed]
 - Althoey, F.; Ansari, W.S.; Sufian, M.; Deifalla, A.F. Advancements in Low-Carbon Concrete as a Construction Material for the Sustainable Built Environment. Dev. Built Environ. 2023, 16, 100284. [Google Scholar] [CrossRef]
 - Estadísticas e Indicadores: Ambientales-CEPALSTAT Bases de Datos y Publicaciones Estadísticas. Available online: https://statistics.cepal.org/portal/cepalstat/dashboard.html?theme=3&lang=es (accessed on 18 November 2024).
 - Ruíz, M.A.; Mack-Vergara, Y.L. Analysis of Climate Risk in Panama’s Urban Areas. Climate 2024, 12, 104. [Google Scholar] [CrossRef]
 - Rodríguez, E.; Ávila, G.; Guerra-Chanis, G. Coastline Changes in the Pacific of Panama Due to Coastal Erosion. In Proceedings of the 2022 8th International Engineering, Sciences and Technology Conference, Panama City, Panama, 23–25 October 2022; pp. 440–444. [Google Scholar]
 - Almheiri, A.; Montenegro, J.F.; Ewane, E.B.; Mohan, M. Climate Change Hazards and the Resilience of Coastal Cities in the Gulf Cooperation Council Countries: A Systematic Review. City Environ. Interact. 2024, 24, 100177. [Google Scholar] [CrossRef]
 - Dong, W.S.; Ismailluddin, A.; Yun, L.S.; Ariffin, E.H.; Saengsupavanich, C.; Abdul Maulud, K.N.; Ramli, M.Z.; Miskon, M.F.; Jeofry, M.H.; Mohamed, J.; et al. The Impact of Climate Change on Coastal Erosion in Southeast Asia and the Compelling Need to Establish Robust Adaptation Strategies. Heliyon 2024, 10, e25609. [Google Scholar] [CrossRef]
 - Ying, C.; Liu, Y.; Li, J.; Zhong, J.; Chen, Y.; Ai, S.; Zhang, H.; Huang, Q.; Gong, H. Evolution and Influencing Factors of Coastal Resilience in the East China Sea. Sci. Total Environ. 2024, 944, 173841. [Google Scholar] [CrossRef]
 - Lv, Y.; Sarker, M.N.I. Integrative Approaches to Urban Resilience: Evaluating the Efficacy of Resilience Strategies in Mitigating Climate Change Vulnerabilities. Heliyon 2024, 10, e28191. [Google Scholar] [CrossRef]
 - Adesina, A.; Zhang, J. Impact of Concrete Structures Durability on Its Sustainability and Climate Resiliency. Next Sustain. 2024, 3, 100025. [Google Scholar] [CrossRef]
 - Ministerio de Ambiente. Cuarta Comunicación Nacional Sobre Cambio Climático de la República de Panamá; Gobierno Nacional de la República de Panamá: Panama City, Panama, 2022.
 - Irassar, E.F.; John, V.; Tobón, J.I.; García Punhagui, K.R.; Mack V, J.L. Rol del Cemento en la Construcción de Ciudades Sostenibles y Resilientes; Federación Interamericana de Cemento: Bogota, Colombia, 2020. [Google Scholar]
 - Thorne, J.; Bompa, D.V.; Funari, M.F.; Garcia-Troncoso, N. Environmental Impact Evaluation of Low-Carbon Concrete Incorporating Fly Ash and Limestone. Clean. Mater. 2024, 12, 100242. [Google Scholar] [CrossRef]
 - Adesina, A. Recent Advances in the Concrete Industry to Reduce Its Carbon Dioxide Emissions. Environ. Chall. 2020, 1, 100004. [Google Scholar] [CrossRef]
 - Alsharari, F.; Iftikhar, B.; Uddin, M.A.; Deifalla, A.F. Data-Driven Strategy for Evaluating the Response of Eco-Friendly Concrete at Elevated Temperatures for Fire Resistance Construction. Results Eng. 2023, 20, 101595. [Google Scholar] [CrossRef]
 - Marathe, S.; Sadowski, Ł. Developments in Biochar Incorporated Geopolymers and Alkali Activated Materials: A Systematic Literature Review. J. Clean. Prod. 2024, 469, 143136. [Google Scholar] [CrossRef]
 - Lu, D.; Qu, F.; Zhang, C.; Guo, Y.; Luo, Z.; Xu, L.; Li, W. Innovative Approaches, Challenges, and Future Directions for Utilizing Carbon Dioxide in Sustainable Concrete Production. J. Build. Eng. 2024, 97, 110904. [Google Scholar] [CrossRef]
 - Alkhawaldeh, A.A.; Judah, H.I.; Shammout, D.Z.; Almomani, O.A.; Alkhawaldeh, M.A. Sustainability Evaluation and Life Cycle Assessment of Concretes Including Pozzolanic By-Products and Alkali-Activated Binders. Results Eng. 2024, 23, 102569. [Google Scholar] [CrossRef]
 - United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
 - Wikimedia Commons Contributors File:Panama on the Globe (Americas Centered).Svg. Available online: https://commons.wikimedia.org/wiki/File:Panama_on_the_globe_(Americas_centered).svg (accessed on 24 September 2025).
 - Ministerio de Ambiente Climate Risk Atlas of Panama. Available online: https://atlasderiesgoclimatico.miambiente.gob.pa/atlas (accessed on 23 September 2025).
 - Inec Panamá en cifras 2017–2021. 2023. Available online: https://www.inec.gob.pa/publicaciones/Default3.aspx?ID_PUBLICACION=1196&ID_CATEGORIA=17&ID_SUBCATEGORIA=45 (accessed on 21 January 2025).
 - Arenas Granados, P.; Garcés, B.H. Diagnostico de la gestión del litoral en la República de Panamá. In Manejo Costero Integrado y Política Pública en Iberoamérica: Un Diagnóstico. Necesidad de Cambio; Red IBERMAR (CYTED): Cadiz, Spain, 2010; pp. 71–90. ISBN 978-84-693-0355-9. [Google Scholar]
 - INEC. Instituto Nacional de Estadística y Censo Capítulo I: Aspectos Geográficos Generales. In Estadísticas Ambientales; Contraloría General de la República de Panamá: Panama City, Panama, 2004. [Google Scholar]
 - IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; ISBN 978-1-00-915789-6. [Google Scholar]
 - Instituto de Hidráulica Ambiental Universidad de Cantabria. Development of a Marine Dynamics Database for the Panamanian Coasts to Assess Vulnerability and Climate Change Impacts to Sea Level Rise. Available online: https://www.ctc-n.org/system/files/dossier/3b/DELIV_3_3_EVOLUTION_COASTLINE_PANAMA.pdf (accessed on 2 February 2025).
 - Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
 - Gobierno Nacional de la República de Panamá. Resumen Ejecutivo: Riesgo de Cambio Climático Precipitación, Temperatura, Ascenso del Nivel el Mar 2030, 2050, 2070; Gobierno Nacional de la República de Panamá: Panama City, Panama, 2023; p. 20.
 - Toledo, I.; Pagán, J.I.; López, I.; Aragonés, L.; Olcina, J. Nature-Based Solutions on the Coast in Face of Climate Change: The Case of Benidorm (Spain). Urban Clim. 2024, 53, 101816. [Google Scholar] [CrossRef]
 - Sánchez-Garrido, A.J.; Navarro, I.J.; Yepes, V. Sustainable Preventive Maintenance of MMC-Based Concrete Building Structures in a Harsh Environment. J. Build. Eng. 2024, 95, 110155. [Google Scholar] [CrossRef]
 - Food and Agriculture Organization of the United Nations. FAOSTAT-Temperature Change on Land. Available online: https://www.fao.org/faostat/en/#data/ET/visualize (accessed on 21 January 2025).
 - Centro Clima Plataforma Regional de Información Climática. Available online: https://centroclima.org/ (accessed on 27 January 2025).
 - Dirección de Cambio Climático. Índice de Vulnerabilidad al Cambio Climático de La República de Panamá; Ministerio de Ambiente: Panama City, Panama, 2021.
 - Zhang, Y.; Ayyub, B.M.; Fung, J.F. Projections of Corrosion and Deterioration of Infrastructure in United States Coasts under a Changing Climate. Resilient Cities Struct. 2022, 1, 98–109. [Google Scholar] [CrossRef]
 - Earth Information Center Sea Level is Rising, Worldwide. Available online: https://earth.gov/sealevel (accessed on 30 January 2025).
 - Sua-iam, G.; Makul, N. Characteristics of Non-Steady-State Chloride Migration of Self-Compacting Concrete Containing Recycled Concrete Aggregate Made of Fly Ash and Silica Fume. Case Stud. Constr. Mater. 2024, 20, e02877. [Google Scholar] [CrossRef]
 - Mashiyi, S.; Weesakul, S.; Vojinovic, Z.; Sanchez Torres, A.; Babel, M.S.; Ditthabumrung, S.; Ruangpan, L. Designing and Evaluating Robust Nature-Based Solutions for Hydro-Meteorological Risk Reduction. Int. J. Disaster Risk Reduct. 2023, 93, 103787. [Google Scholar] [CrossRef]
 - Kumar, P.; Debele, S.E.; Sahani, J.; Rawat, N.; Marti-Cardona, B.; Alfieri, S.M.; Basu, B.; Basu, A.S.; Bowyer, P.; Charizopoulos, N.; et al. An Overview of Monitoring Methods for Assessing the Performance of Nature-Based Solutions against Natural Hazards. Earth-Sci. Rev. 2021, 217, 103603. [Google Scholar] [CrossRef]
 - Ministerio de Economía y Finanzas. Inventario de las Incidencias de los Desastres en la República de Panamá al 2022; Gobierno Nacional de la República de Panamá: Panama City, Panama, 2022.
 - Schoonees, T.; Gijón Mancheño, A.; Scheres, B.; Bouma, T.J.; Silva, R.; Schlurmann, T.; Schüttrumpf, H. Hard Structures for Coastal Protection, Towards Greener Designs. Estuaries Coasts 2019, 42, 1709–1729. [Google Scholar] [CrossRef]
 - Waryszak, P.; Gavoille, A.; Whitt, A.A.; Kelvin, J.; Macreadie, P.I. Combining Gray and Green Infrastructure to Improve Coastal Resilience: Lessons Learnt from Hybrid Flood Defenses. Coast. Eng. J. 2021, 63, 335–350. [Google Scholar] [CrossRef]
 - Foti, E.; Musumeci, R.E.; Stagnitti, M. Coastal Defence Techniques and Climate Change: A Review. Rend. Fis. Acc. Lincei 2020, 31, 123–138. [Google Scholar] [CrossRef]
 - Bakrin Sofawi, A.; Rozainah, M.Z.; Normaniza, O.; Roslan, H. Mangrove Rehabilitation on Carey Island, Malaysia: An Evaluation of Replanting Techniques and Sediment Properties. Mar. Biol. Res. 2017, 13, 390–401. [Google Scholar] [CrossRef]
 - Nolan, S.; Rossini, M.; Knight, C.; Nanni, A. New Directions for Reinforced Concrete Coastal Structures. J. Infrastruct. Preserv. Resil. 2021, 2, 1. [Google Scholar] [CrossRef]
 - Wikimedia Commons Contributors File:Revetment Dubai.Jpg. Available online: https://commons.wikimedia.org/w/index.php?title=File:Revetment_Dubai.jpg&oldid=770262923 (accessed on 3 September 2025).
 - Wikimedia Commons Contributors File:Madeira-Calheta-Harbour-Armourstones-Dam-Concrete Cubes (Breakwater Structure)-02ASD.Jpg. Available online: https://commons.wikimedia.org/wiki/File:Madeira-Calheta-harbour-armourstones-dam-concrete_cubes_(Breakwater_structure)-02ASD.jpg (accessed on 3 September 2025).
 - Wikimedia Commons Contributors File:Railings and Seawall, Watcombe Beach-Geograph.Org.Uk-4014167.Jpg. Available online: https://commons.wikimedia.org/wiki/File:Railings_and_seawall,_Watcombe_Beach_-_geograph.org.uk_-_4014167.jpg (accessed on 3 September 2025).
 - Wikimedia Commons Contributors File:Seawallventnor.Jpg. Available online: https://commons.wikimedia.org/wiki/File:Seawallventnor.jpg (accessed on 3 September 2025).
 - Wikimedia Commons contributors File:Humboldt Bay and Eureka Aerial View.Jpg. Available online: https://commons.wikimedia.org/wiki/File:Humboldt_Bay_and_Eureka_aerial_view.jpg (accessed on 3 September 2025).
 - Tangelder, M.; Ysebaert, T.; Chowdhury, S.; Reinhard, A.J.; Doorn, F.; Hossain, M.; Smaal, A.C. Eco-Engineered Coastal Defense Integrated with Sustainable Aquatic Food Production in Bangladesh (ECOBAS); IMARES: IJmuiden, The Netherlands, 2015. [Google Scholar]
 - Chowdhury, M.S.N.; Walles, B.; Sharifuzzaman, S.M.; Shahadat Hossain, M.; Ysebaert, T.; Smaal, A.C. Oyster Breakwater Reefs Promote Adjacent Mudflat Stability and Salt Marsh Growth in a Monsoon Dominated Subtropical Coast. Sci. Rep. 2019, 9, 8549. [Google Scholar] [CrossRef] [PubMed]
 - Pham, L.T.; Huang, J.Y. 3D Printed Artificial Coral Reefs: Design and Manufacture. Low-Carbon Mater. Green Constr. 2024, 2, 23. [Google Scholar] [CrossRef]
 - Korniejenko, K.; Oliwa, K.; Gądek, S.; Dynowski, P.; Źróbek, A.; Lin, W.-T. A Review of Additive Manufacturing Techniques in Artificial Reef Construction: Materials, Processes, and Ecological Impact. Appl. Sci. 2025, 15, 4216. [Google Scholar] [CrossRef]
 - Wikimedia Commons Contributors File:Lake Pontchartrain Basin Foundation Reef Balls, Close.Jpg. Available online: https://commons.wikimedia.org/wiki/File:Lake_Pontchartrain_Basin_Foundation_Reef_Balls,_close.jpg (accessed on 3 September 2025).
 - Wikimedia Commons Contributors File:Snorkeling Reef.JPG. Available online: https://commons.wikimedia.org/wiki/File:Snorkeling_Reef.JPG (accessed on 9 March 2025).
 - Singer, M.N.; Hamouda, M.A.; El-Hassan, H.; Hinge, G. Permeable Pavement Systems for Effective Management of Stormwater Quantity and Quality: A Bibliometric Analysis and Highlights of Recent Advancements. Sustainability 2022, 14, 13061. [Google Scholar] [CrossRef]
 - Wikimedia Commons Contributors MKE-GreenAlley Southlawn 15.Jpg. Available online: https://commons.wikimedia.org/wiki/File:MKE-GreenAlley_Southlawn_15.jpg (accessed on 3 September 2025).
 - Ling, C.; Yazdani, N.; Beneberu, E.; Koliou, M. Experimental Evaluation of Elevated Home Slabs for Flood Mitigation. J. Coast. Res. 2024, 41, 223–234. [Google Scholar] [CrossRef]
 - Ahmad, D.; Afzal, M. Flood Hazards and Factors Influencing Household Flood Perception and Mitigation Strategies in Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 15375–15387. [Google Scholar] [CrossRef]
 - Wikimedia Commons Contributors File:Bruynzeelwoning Suriname.Jpg. Available online: https://commons.wikimedia.org/w/index.php?title=File:Bruynzeelwoning_Suriname.jpg&oldid=872011518 (accessed on 3 September 2025).
 - Wikimedia Commons Contributors File:Presa El Cercado-Proyecto Río Ranchería.JPG. Available online: https://commons.wikimedia.org/w/index.php?title=File:Presa_El_Cercado_-_Proyecto_R%C3%ADo_Rancher%C3%ADa.JPG&oldid=898164805 (accessed on 3 September 2025).
 - Kennedy, A.; Copp, A.; Florence, M.; Gradel, A.; Gurley, K.; Janssen, M.; Kaihatu, J.; Krafft, D.; Lynett, P.; Owensby, M.; et al. Hurricane Michael in the Area of Mexico Beach, Florida. J. Waterw. Port Coast. Ocean. Eng. 2020, 146, 05020004. [Google Scholar] [CrossRef]
 - Wikimedia Commons Contributors File: Aerial View of Hurricane Michael’s Damage in Mexico Beach on 11 October 2018 (181011-G-G0105-1008A).Jpg. Available online: https://commons.wikimedia.org/wiki/File:Aerial_view_of_Hurricane_Michael%27s_damage_in_Mexico_Beach_on_October_11,_2018_(181011-G-G0105-1008A).jpg (accessed on 24 June 2025).
 - Wikimedia Commons Contributors File:0259Views of Palanas Mini Dam, Maasim River Walls Slope Protection 17.Jpg. Available online: https://commons.wikimedia.org/wiki/File:0259Views_of_Palanas_Mini_Dam,_Maasim_River_walls_slope_protection_17.jpg (accessed on 24 September 2025).
 - Oyejobi, D.O.; Firoozi, A.A.; Fernández, D.B.; Avudaiappan, S. Integrating Circular Economy Principles into Concrete Technology: Enhancing Sustainability through Industrial Waste Utilization. Results Eng. 2024, 24, 102846. [Google Scholar] [CrossRef]
 - Shahedan, N.F.; Hadibarata, T.; Al Bakri Abdullah, M.M.; Jusoh, M.N.H.; Rahim, S.Z.A.; Isia, I.; Bras, A.A.; Bouaissi, A.; Juwono, F.H. Potential of Fly Ash Geopolymer Concrete as Repairing and Retrofitting Solutions for Marine Infrastructure: A Review. Case Stud. Constr. Mater. 2024, 20, e03214. [Google Scholar] [CrossRef]
 - Zhang, Y.H.; Zhong, W.L.; Fan, L.F. Long-Term Durability Investigation of Basalt Fiber-Reinforced Geopolymer Concrete in Marine Environment. J. Mater. Res. Technol. 2024, 31, 593–605. [Google Scholar] [CrossRef]
 - Rathnarajan, S.; Sikora, P. Seawater-Mixed Concretes Containing Natural and Sea Sand Aggregates—A Review. Results Eng. 2023, 20, 101457. [Google Scholar] [CrossRef]
 - Yang, C.; Xu, X.; Lei, Z.; Sun, J.; Wang, Y.; Luo, G.; Yao, H.; Mei, Y. Enhancing Mechanical Properties of Three-Dimensional Concrete at Elevated Temperatures through Recycled Ceramic Powder Treatment Methods. J. Mater. Res. Technol. 2024, 31, 434–446. [Google Scholar] [CrossRef]
 - Nilimaa, J. Smart Materials and Technologies for Sustainable Concrete Construction. Dev. Built Environ. 2023, 15, 100177. [Google Scholar] [CrossRef]
 - Meshram, S.; Raut, S.P.; Ansari, K.; Madurwar, M.; Daniyal, M.; Khan, M.A.; Katare, V.; Khan, A.H.; Khan, N.A.; Hasan, M.A. Waste Slags as Sustainable Construction Materials: A Compressive Review on Physico Mechanical Properties. J. Mater. Res. Technol. 2023, 23, 5821–5845. [Google Scholar] [CrossRef]
 - Gursel, A.P.; Ostertag, C.P. Impact of Singapore’s Importers on Life-Cycle Assessment of Concrete. J. Clean. Prod. 2016, 118, 140–150. [Google Scholar] [CrossRef]
 - Cemex Vertua, Hormigón con Bajas Emisiones de CO2. Available online: https://www.cemex.es/hormigon/ecologico-vertua (accessed on 24 February 2025).
 - CarbonCure. CarbonCure’s Sustainable Concrete Solution. Available online: https://www.carboncure.com/ (accessed on 30 July 2023).
 - Cementos Argos Panamá. Puzolana Molida. Available online: https://www.argos.com.pa/producto/cementos/granel/puzolana-molida/ (accessed on 2 February 2025).
 - ARGOS. Environmental Product Declaration (EPD) for Concrete; ARGOS: Llano Bonito, Panama City, Panama, 2014. [Google Scholar]
 - CEMEX. Environmental Product Declaration; CEMEX: Llano Bonito, Panama City, Panama, 2022; Available online: https://www.nrmca.org/wp-content/uploads/2019/10/NRMCAEPD10014PanamaCEMEX.pdf (accessed on 2 February 2025).
 - EPD Hub. Environmental Product Declaration; Concretex: Panama City, Panama, 2024; Available online: https://manage.epdhub.com/declarations/concrete-ready-mix/concretex/1343/f-c-420-kgcm2/ (accessed on 2 February 2025).
 - ISO 14025:2006; Environmental Labels and Declarations—Type III Environmental Declarations—Principles and Procedures. International Organization for Standardization: Geneva, Switzerland, 2006.
 - Norma Técnica DGNTI-COPANIT 5-2019; Edificaciones, Materiales de Construcción. Cemento Hidráulico. Ministerio de Comercio e Industrias: Panama City, Panama, 2019.
 - ASTM C150/C150M-24; Standar Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2024; ISBN 978-1-64195-006-0.
 - ASTM C1157/C1157M-25; ASTM Standard Performance Specification for Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2025.
 - Ministerio de Obras Públicas & Junta Técnica de Ingeniería y Arquitectura. Resolución JTIA N° 20: Reglamento Para El Diseño Estructural de La República de Panamá; Ministerio de Obras Públicas: Panama City, Panama, 2022. [Google Scholar]
 - ACI CODE-318-25; Building Code for Structural Concrete-Code Requirements and Commentary (ACI CODE-318-25). American Concrete Institute: Farmington Hills, MI, USA, 2025; ISBN 978-1-64195-309-2.
 - ACI CODE-323-24; Low-Carbon Cpncrete-Code Requirements and Commentary. American Concrete Institute: Farmington Hills, MI, USA, 2024; ISBN 978-1-64195-263-7.
 - ACI Committee. 93 ITG-10.1R-18: Report on Alternative Cements; American Concrete Institute: Farmington Hills, MI, USA, 2018; ISBN 978-1-64195-024-4. [Google Scholar]
 - ACI Innovation Task Group. 10 ITG-10R-18: Practitioner’s Guide for Alternative Cements; American Concrete Institute: Farmington Hills, MI, USA, 2018; ISBN 978-1-64195-009-1. [Google Scholar]
 - ACI PRC130-19; Report on the Role of Materials in Sustainable Concrte Construction. American Concrete Institute: Farmington Hills, MI, USA, 2019; ISBN 978-1-64195-048-0.
 - ACI PRC-130.1-25; Environmental Product Declarations (EPDs) of Cement-Based Products: State of Practice and Path Forward—TechNote. American Concrete Institute: Farmington Hills, MI, USA, 2025.
 - Chen, S.; Ye, Z.; Lu, W.; Feng, K. Exploring Performance of Using SCM Concrete: Investigating Impacts Shifting along Concrete Supply Chain and Construction. Buildings 2024, 14, 2186. [Google Scholar] [CrossRef]
 - Perfil Nacional Económico: Panamá-CEPALSTAT Portal de Datos y Publicaciones Estadísticas. Available online: https://statistics.cepal.org/portal/cepalstat/perfil-nacional.html?theme=2&country=pan&lang=es (accessed on 16 September 2025).
 - Ferrario, F.; Mourato, J.M.; Rodrigues, M.S.; Dias, L.F. Evaluating Nature-Based Solutions as Urban Resilience and Climate Adaptation Tools: A Meta-Analysis of Their Benefits on Heatwaves and Floods. Sci. Total Environ. 2024, 950, 175179. [Google Scholar] [CrossRef]
 - Castro, L.; Pinto, M.; Martínez, J.; Alfú, V. Manual de Soluciones Basadas en la Naturaleza (SbN) Para la Gestión del Cambio Climático en Panamá; Medina, L., Medina, E., Tresserra, G., Eds.; Ministerio de Ambiente: Panama City, Panama, 2024. [Google Scholar]
 - Johana, P. Establecen Alianza Estratégica Para Restauración de los Manglares Degradados en Panamá-MiAmbiente. 2024. Available online: https://miambiente.gob.pa/establecen-alianza-estrategica-para-restauracion-de-los-manglares-degradados-en-panama/ (accessed on 17 January 2025).
 - Norris, B.K.; Reguero, B.G.; Bartolai, J.; Yukish, M.A.; Rhode-Barbarigos, L.; Haus, B.K.; Ojeda, G.B.; Maza, M.; Lara, J.L.; Beck, M.W. Designing Modular, Artificial Reefs for Both Coastal Defense and Coral Restoration. Coast. Eng. 2025, 199, 104742. [Google Scholar] [CrossRef]
 - Huang, X.; Wang, Z.; Liu, Y.; Hu, W.; Ni, W. On the Use of Blast Furnace Slag and Steel Slag in the Preparation of Green Artificial Reef Concrete. Constr. Build. Mater. 2016, 112, 241–246. [Google Scholar] [CrossRef]
 - Yoris-Nobile, A.I.; Slebi-Acevedo, C.J.; Lizasoain-Arteaga, E.; Indacoechea-Vega, I.; Blanco-Fernandez, E.; Castro-Fresno, D.; Alonso-Estebanez, A.; Alonso-Cañon, S.; Real-Gutierrez, C.; Boukhelf, F.; et al. Artificial Reefs Built by 3D Printing: Systematisation in the Design, Material Selection and Fabrication. Constr. Build. Mater. 2023, 362, 129766. [Google Scholar] [CrossRef]
 - Xu, Q.; Ji, T.; Yang, Z.; Ye, Y. Preliminary Investigation of Artificial Reef Concrete with Sulphoaluminate Cement, Marine Sand and Sea Water. Constr. Build. Mater. 2019, 211, 837–846. [Google Scholar] [CrossRef]
 - Xu, Q.; Ji, T.; Yang, Z.; Ye, Y. Steel Rebar Corrosion in Artificial Reef Concrete with Sulphoaluminate Cement, Sea Water and Marine Sand. Constr. Build. Mater. 2019, 227, 116685. [Google Scholar] [CrossRef]
 - Uddin, M.J.; Smith, K.J.; Hargis, C.W. Development of Pervious Oyster Shell Habitat (POSH) Concrete for Reef Restoration and Living Shorelines. Constr. Build. Mater. 2021, 295, 123685. [Google Scholar] [CrossRef]
 - Rupasinghe, M.; Nicolas, R.S.; Lanham, B.S.; Morris, R.L. Sustainable Oyster Shell Incorporated Artificial Reef Concrete for Living Shorelines. Constr. Build. Mater. 2024, 410, 134217. [Google Scholar] [CrossRef]
 - Ozment, S.; Gonzalez, M.; Schumacher, A.; Oliver, E.; Morales, G.; Gartner, T.; Zuniga, M.C.S.; Grunwaldt, A.; Watson, G. Nature-Based Solutions in Latin America and the Caribbean: Regional Status and Priorities for Growth; IDB Publications: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
 - IDB|Climate Resilient Coastal Mangement and Infrastructure Program. Available online: https://www.iadb.org/en/project/BH-L1043 (accessed on 15 September 2025).
 - Hernández-Delgado, E.A. Coastal Restoration Challenges and Strategies for Small Island Developing States in the Face of Sea Level Rise and Climate Change. Coasts 2024, 4, 235–286. [Google Scholar] [CrossRef]
 - Andrade, C.; Rebolledo, N.; Tavares, F.; Pérez, R.; Baz, M. 15-Concrete Durability of the New Panama Canal: Background and Aspects of Testing. In Marine Concrete Structures; Alexander, M.G., Ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 429–458. ISBN 978-0-08-100905-5. [Google Scholar]
 - Cedeño, A.; Hernández, C. Estudio del efecto ambiental industrial y marino sobre concreto reforzado expuesto en dos ciudades del pacífico panameño. I+D Tecnológico 2021, 17, 59–65. [Google Scholar] [CrossRef]
 - Cedeño, A. Conducta del concreto reforzado bajo el efecto de diferentes microclimas. I+D Tecnológico 2021, 17, 103–113. [Google Scholar] [CrossRef]
 - Cedeño, A.S.; Hernández, C.; Ortiz, F.; Villar, J.A. Acción del microambiente sobre el concreto reforzado. Prism. Tecnológico 2022, 13, 10–16. [Google Scholar] [CrossRef]
 














| Alternatives | Characteristics | Availability in Panama * | Author | 
|---|---|---|---|
| Granulated blast furnace slag | It is a by-product of the manufacture of cast iron Pozzolanic capacity Resistance to chloride ion penetration Its durability performance is less affected by weather changes Using 50% slag can reduce carbon emissions by up to 40% and energy consumption by 30%  | Imported in the past | [6,69,70] | 
| Basalt fiber | Improves the durability of geopolymer concrete | [70,71] | |
| Seawater and sea sand | For its application, it is necessary to take certain measures. The incorporation of SCM decreases the penetration of chloride ions through the refined pore structure of the cementitious matrix, this is due to filler affect, pozzolanic reaction, and accelerated hydration. The addition of SCM, corrosion inhibitors and the adoption of cathodic protection measures ensure the long-term durability of concretes with water and sea sand | Available | [72] | 
| Plastic waste | Waste consumer and industrial plastics that serve as a partial replacement in aggregates and are suitable for non-load-bearing structures | Available | [69] | 
| Cement kiln powder | It serves as a partial cement replacement. Improves the strength and durability of concrete | Available | [69] | 
| Fly ash (FA) | Coal combustion product and works as a partial replacement for Portland cement It can produce high-performance concrete. It has the potential to reduce the mobility of chloride ions through pozzolanic reactions. It can reduce emissions by up to 50%  | Imported | [6,17,40,69,70] | 
| Silica fume (SF) | It originates from the production of silicon and ferrosilicon alloys and works as a partial replacement for Portland cement. It can improve the strength and durability of concrete. It has the potential to reduce the mobility of chloride ions through pozzolanic reactions | Imported | [6,22,40,69] | 
| Metakaolin | It is a type of calcined kaolin clay that has a strong pozzolanic reactivity and offers benefits such as improving the strength and durability of concrete. It can partially replace cement. The amorphous nature of calcined clay enhances sulfate attack, improves crack resistance, and reduces alkali-silica reaction. Replacement of up to 25% with metakaolin has improved resistance to chloride ions.  | [6,22,40,69] | |
| Recycled ceramic powder | It serves as a partial replacement for cement. | Available | [6,22,73] | 
| Biomass ash | From the combustion of plant and animal waste. | Available | [73] | 
| Carbon capture and utilization | CO2 from industrial processes is captured and used in the production process of concrete materials | Available | [74] | 
| Cupola slag | Certain properties such as compressive strength are increased when replaced by a certain content of cupola slag | [75] | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Martínez, K.J.; Guerra-Chanis, G.; Mack-Vergara, Y.L. Developing Coastal Resilience to Climate Change in Panama Through Sustainable Concrete Applications. J. Compos. Sci. 2025, 9, 575. https://doi.org/10.3390/jcs9110575
Castillo-Martínez KJ, Guerra-Chanis G, Mack-Vergara YL. Developing Coastal Resilience to Climate Change in Panama Through Sustainable Concrete Applications. Journal of Composites Science. 2025; 9(11):575. https://doi.org/10.3390/jcs9110575
Chicago/Turabian StyleCastillo-Martínez, Kathleen J., Gisselle Guerra-Chanis, and Yazmin L. Mack-Vergara. 2025. "Developing Coastal Resilience to Climate Change in Panama Through Sustainable Concrete Applications" Journal of Composites Science 9, no. 11: 575. https://doi.org/10.3390/jcs9110575
APA StyleCastillo-Martínez, K. J., Guerra-Chanis, G., & Mack-Vergara, Y. L. (2025). Developing Coastal Resilience to Climate Change in Panama Through Sustainable Concrete Applications. Journal of Composites Science, 9(11), 575. https://doi.org/10.3390/jcs9110575
        
                                                