Optimizing Post-Processing Parameters of 3D-Printed Resin for Surgical Guides
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
- Immediately: specimens washed and cured immediately after printing.
- 24 h: specimens stored in the 3D-print building platform, 24 h before post-processing.
- 72 h: specimens stored in the 3D-print building platform, 72 h before post-processing.
2.2. Solvent Dissolution Test
2.3. Measuring Flexural Strength
2.4. Measuring Hardness
2.5. Statistical Analysis
3. Results
3.1. Monomer Release and Leachable Components
3.2. Flexural Strength and Vickers Hardness
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strub, J.R.; Rekow, E.D.; Witkowski, S. Computer-Aided Design and Fabrication of Dental Restorations. J. Am. Dent. Assoc. 2006, 137, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Revilla-León, M.; Özcan, M. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. J. Prosthodont. 2019, 28, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Alshamrani, A.A.; Raju, R.; Ellakwa, A. Effect of Printing Layer Thickness and Postprinting Conditions on the Flexural Strength and Hardness of a 3D-Printed Resin. Biomed Res. Int. 2022, 2022, 8353137. [Google Scholar] [CrossRef]
- Vara, R.; Lin, W.; Low, J.K.; Smith, D.; Grimm, A.; Calvert, G.; Tadakamadla, S.K.; Alifui-Segbaya, F.; Ahmed, K.E. Assessing the Impact of Resin Type, Post-Processing Technique, and Arch Location on the Trueness and Precision of 3D-Printed Full-Arch Implant Surgical Guides. Appl. Sci. 2023, 13, 2491. [Google Scholar] [CrossRef]
- Dawood, A.; Marti, B.M.; Sauret-Jackson, V.; Darwood, A. 3D Printing in Dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef]
- ISO 5725-1:1994; Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 1: General Principles and Definitions. International Organization for Standardization: Geneva, Switzerland, 1994.
- Zhivago, P. Three-Dimensional Printing in Prosthodontics, Restorative, and Surgical Dentistry. Dent. Clin. North. Am. 2025, 69, 275–298. [Google Scholar] [CrossRef]
- Balhaddad, A.A.; Garcia, I.M.; Mokeem, L.; Alsahafi, R.; Majeed-Saidan, A.; Albagami, H.H.; Khan, A.S.; Ahmad, S.; Collares, F.M.; Della Bona, A.; et al. Three-Dimensional (3D) Printing in Dental Practice: Applications, Areas of Interest, and Level of Evidence. Clin. Oral. Investig. 2023, 27, 2465–2481. [Google Scholar] [CrossRef]
- Whitley, D.; Eidson, R.S.; Rudek, I.; Bencharit, S. In-Office Fabrication of Dental Implant Surgical Guides Using Desktop Stereolithographic Printing and Implant Treatment Planning Software: A Clinical Report. J. Prosthet. Dent. 2017, 118, 256–263. [Google Scholar] [CrossRef]
- Kola, M.; Shah, A.; Khalil, H.; Rabah, A.; Harby, N.M.; Sabra, S.; Raghav, D. Surgical Templates for Dental Implant Positioning; Current Knowledge and Clinical Perspectives. Niger. J. Surg. 2015, 21, 1. [Google Scholar] [CrossRef]
- Donker, V.J.J.; Heijs, K.H.; Pol, C.W.P.; Meijer, H.J.A. Digital versus Conventional Surgical Guide Fabrication: A Randomized Crossover Study on Operator Preference, Difficulty, Effectiveness, and Operating Time. Clin. Exp. Dent. Res. 2024, 10, e831. [Google Scholar] [CrossRef] [PubMed]
- Plebani, M. Errors in Clinical Laboratories or Errors in Laboratory Medicine? Clin. Chem. Lab. Med. 2006, 44, 750–759. [Google Scholar] [CrossRef]
- Duhn, C.; Thalji, G.; Al-Tarwaneh, S.; Cooper, L.F. A Digital Approach to Robust and Esthetic Implant Overdenture Construction. J. Esthet. Restor. Dent. 2021, 33, 118–126. [Google Scholar] [CrossRef]
- Yeung, M.; Abdulmajeed, A.; Carrico, C.K.; Deeb, G.R.; Bencharit, S. Accuracy and Precision of 3D-Printed Implant Surgical Guides with Different Implant Systems: An In Vitro Study. J. Prosthet. Dent. 2020, 123, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Morón-Conejo, B.; Berrendero, S.; Salido, M.P.; Zarauz, C.; Pradíes, G. Accuracy of Surgical Guides Manufactured with Four Different 3D Printers. A Comparative in Vitro Study. J. Dent. 2024, 148, 105226. [Google Scholar] [CrossRef]
- Chackartchi, T.; Romanos, G.E.; Parkanyi, L.; Schwarz, F.; Sculean, A. Reducing Errors in Guided Implant Surgery to Optimize Treatment Outcomes. Periodontol. 2000 2022, 88, 64–72. [Google Scholar] [CrossRef]
- Smitkarn, P.; Subbalekha, K.; Mattheos, N.; Pimkhaokham, A. The Accuracy of Single-tooth Implants Placed Using Fully Digital-guided Surgery and Freehand Implant Surgery. J. Clin. Periodontol. 2019, 46, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Ammoun, R.; Dalal, N.; Abdulmajeed, A.A.; Deeb, G.R.; Bencharit, S. Effects of Two Postprocessing Methods onto Surface Dimension of In-Office Fabricated Stereolithographic Implant Surgical Guides. J. Prosthodont. 2021, 30, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Daoud, G.E.; Pezzutti, D.L.; Dolatowski, C.J.; Carrau, R.L.; Pancake, M.; Herderick, E.; VanKoevering, K.K. Establishing a Point-of-Care Additive Manufacturing Workflow for Clinical Use. J. Mater. Res. 2021, 36, 3761–3780. [Google Scholar] [CrossRef]
- Alharbi, S.; Alshabib, A.; Algamaiah, H.; Aldosari, M.; Alayad, A. Influence of Post-Printing Polymerization Time on Flexural Strength and Microhardness of 3D Printed Resin Composite. Coatings 2025, 15, 230. [Google Scholar] [CrossRef]
- Kessler, A.; Reichl, F.-X.; Folwaczny, M.; Högg, C. Monomer Release from Surgical Guide Resins Manufactured with Different 3D Printing Devices. Dent. Mater. 2020, 36, 1486–1492. [Google Scholar] [CrossRef]
- Hassanpour, M.; Narongdej, P.; Alterman, N.; Moghtadernejad, S.; Barjasteh, E. Effects of Post-Processing Parameters on 3D-Printed Dental Appliances: A Review. Polymers 2024, 16, 2795. [Google Scholar] [CrossRef]
- Pranno, N.; Franchina, A.; De Angelis, F.; Bossù, M.; Salucci, A.; Brauner, E.; Cristalli, M.P.; La Monaca, G. The Effects of Light Crystal Display 3D Printers, Storage Time and Steam Sterilization on the Dimensional Stability of a Photopolymer Resin for Surgical Guides: An In Vitro Study. Materials 2025, 18, 474. [Google Scholar] [CrossRef] [PubMed]
- Lo Russo, L.; Guida, L.; Zhurakivska, K.; Troiano, G.; Di Gioia, C.; Ercoli, C.; Laino, L. Three Dimensional Printed Surgical Guides: Effect of Time on Dimensional Stability. J. Prosthodont. 2023, 32, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Formlabs. Using Surgical Guide Resin. Available online: https://support.formlabs.com/s/article/Using-Surgical-Guide-Resin?language=en_US (accessed on 28 February 2025).
- Formlabs. 3D Printing Surgical Guides. Available online: https://dental.formlabs.com/eu/indications/surgical-guides/guide/ (accessed on 6 August 2025).
- Mudhaffer, S.; Silikas, N.; Satterthwaite, J. Effect of Print Orientation on Sorption, Solubility, and Monomer Elution of 3D Printed Resin Restorative Materials. J. Prosthet. Dent. 2025, 134, 461.e1–461.e12. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-12; Biological Evaluation of Medical Devices—Part 12: Sample Preparation and Reference Materials. International Organization for Standardization: Geneva, Switzerland, 2012.
- Gruber, S.; Nickel, A. Toxic or Not Toxic? The Specifications of the Standard ISO 10993-5 Are Not Explicit Enough to Yield Comparable Results in the Cytotoxicity Assessment of an Identical Medical Device. Front. Med. Technol. 2023, 5, 1195529. [Google Scholar] [CrossRef]
- Machry, R.V.; Dapieve, K.S.; Cadore-Rodrigues, A.C.; Werner, A.; de Jager, N.; Pereira, G.K.R.; Valandro, L.F.; Kleverlaan, C.J. Mechanical Characterization of a Multi-Layered Zirconia: Flexural Strength, Hardness, and Fracture Toughness of the Different Layers. J. Mech. Behav. Biomed. Mater. 2022, 135, 105455. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, L.; Dal Piva, A.M.O.; Tribst, J.P.M.; Nedeljkovic, I.; Kleverlaan, C.J.; Feilzer, A.J. Influence of Surface Finishing and Printing Layer Orientation on Surface Roughness and Flexural Strength of Stereolithography-Manufactured Dental Zirconia. J. Mech. Behav. Biomed. Mater. 2023, 143, 105944. [Google Scholar] [CrossRef]
- ISO 6872:2024; Dentistry—Polymer-Based Restorative Materials. International Organization for Standardization: Geneva, Switzerland, 2019.
- Gawali, N.; Shah, P.P.; Gowdar, I.M.; Bhavsar, K.A.; Giri, D.; Laddha, R. The Evolution of Digital Dentistry: A Comprehensive Review. J. Pharm. Bioallied Sci. 2024, 5, 276. [Google Scholar] [CrossRef]
- Schierz, O.; Hirsch, C.; Krey, K.-F.; Ganss, C.; Kämmerer, P.W.; Schlenz, M.A. Digital Dentistry And Its Impact On Oral Health-Related Quality of Life. J. Evid.-Based Dent. Pract. 2024, 24, 101946. [Google Scholar] [CrossRef]
- Burkhardt, F.; Spies, B.C.; Wesemann, C.; Schirmeister, C.G.; Licht, E.H.; Beuer, F.; Steinberg, T.; Pieralli, S. Cytotoxicity of Polymers Intended for the Extrusion-Based Additive Manufacturing of Surgical Guides. Sci. Rep. 2022, 12, 7391. [Google Scholar] [CrossRef]
- Kurzmann, C.; Janjić, K.; Shokoohi-Tabrizi, H.; Edelmayer, M.; Pensch, M.; Moritz, A.; Agis, H. Evaluation of Resins for Stereolithographic 3D-Printed Surgical Guides: The Response of L929 Cells and Human Gingival Fibroblasts. Biomed Res. Int. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.; Sancho-Puchades, M.; Schober, F.; Thoma, D.; Hämmerle, C.; Jung, R. A Randomized Controlled Clinical Trial Comparing Conventional and Computer-Assisted Implant Planning and Placement in Partially Edentulous Patients. Part 3: Time and Cost Analyses. Int. J. Periodontics Restor. Dent. 2019, 39, e71–e82. [Google Scholar] [CrossRef] [PubMed]
- Ntovas, P.; Marchand, L.; Basir, B.; Kudara, Y.; Revilla-Leon, M.; Att, W. Effect of Storage Conditions and Time on the Dimensional Stability of 3D-Printed Surgical Guides: An In Vitro Study. Clin. Oral. Implant. Res. 2025, 36, 92–99. [Google Scholar] [CrossRef] [PubMed]
Time After Printing | Curing Time | Solvent Dissolution | Flexural Strength | Hardness |
---|---|---|---|---|
Immediate | Immediate | 5 | - | - |
Immediate | 5 min post-light-cure | 5 | 10 | 1 |
10 min post-light-cure | 5 | 10 | 1 | |
20 min post-light-cure | 5 | 10 | 1 | |
30 min post-light-cure | 5 | 10 | 1 | |
24 h | 5 min post-light-cure | 5 | 10 | 1 |
10 min post-light-cure | 5 | 10 | 1 | |
20 min post-light-cure | 5 | 10 | 1 | |
30 min post-light-cure | 5 | 10 | 1 | |
72 h | 5 min post-light-cure | 5 | 10 | 1 |
10 min post-light-cure | 5 | 10 | 1 | |
20 min post-light-cure | 5 | 10 | 1 | |
30 min post-light-cure | 5 | 10 | 1 |
Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Between Groups | 0.000 | 14 | 0.000 | 12.67 | <0.001 |
Within Groups | 0.000 | 60 | 0.000 | ||
Total | 0.000 | 74 |
Time After Printing | Curing Time | Volume Before Mean (mm3) (SD) | Volume After Mean (mm3) (SD) | Volume Difference Mean (mm3) (SD) |
---|---|---|---|---|
Immediate | Immediate | 14.44 (0.15) | 13.60 (0.48) | 0.84 (0.36) B |
5 min | 14.31 (0.21) | 14.07 (0.17) | 0.24 (0.08) A | |
10 min | 14.22 (0.08) | 14.11 (0.15) | 0.12 (0.11) A | |
20 min | 14.16 (0.07) | 14.09 (0.10) | 0.07 (0.06) A | |
30 min | 14.23 (0.11) | 14.12 (0.15) | 0.11 (0.07) A | |
24 h | Immediate | 14.29 (0.14) | 14.05 (0.09) | 0.23 (0.09) A |
5 min | 14.22 (0.09) | 14.14 (0.08) | 0.03 (0.09) A | |
10 min | 14.34 (0.14) | 14.28 (0.11) | 0.06 (0.04) A | |
20 min | 13.98 (1.24) | 13.82 (1.17) | 0.16 (0.13) A | |
30 min | 14.11 (0.07) | 14.02 (0.14) | 0.09 (0.08) A | |
72 h | Immediate | 14.41 (0.20) | 14.02 (0.14) | 0.39 (0.12) A |
5 min | 14.32 (0.06) | 14.13 (0.05) | 0.19 (0.03) A | |
10 min | 14.47 (0.08) | 14.32 (0.06) | 0.15 (0.04) A | |
20 min | 14.27 (0.22) | 14.15 (0.17) | 0.12 (0.08) A | |
30 min | 14.35 (0.10) | 14.25 (0.13) | 0.10 (0.12) A |
Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Between Groups | 4049.965 | 11 | 368.17 | 0.940 | 0.505 |
Within Groups | 42,289.131 | 108 | 391.56 | ||
Total | 46,339.096 | 119 |
Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Between Groups | 235.210 | 11 | 21.38 | 13.918 | <0.001 |
Within Groups | 165.929 | 108 | 1.536 | ||
Total | 401.139 | 119 |
Time After Printing | Curing Time | Vickers Hardness (SD) | Flexural Strength (SD) |
---|---|---|---|
Immediate | 5 min | 18.13 (2.93) BC | 59.43 (20.15) A |
10 min | 17.29 (1.36) BCD | 42.93 (33.07) A | |
20 min | 16.58 (1.56) CD | 53.93 (16.15) A | |
30 min | 18.32 (1.47) BC | 50.83 (23.15) A | |
24 h | 5 min | 14.59 (1.42) E | 55.40 (8.48) A |
10 min | 18.44 (0.35) AB | 54.08 (17.10) A | |
20 min | 20.26 (0.39) A | 41.68 (24.37) A | |
30 min | 17.39 (0.67) BCD | 54.59 (16.07) A | |
72 h | 5 min | 15.95 (0.33) DE | 45.99 (14.82) A |
10 min | 17.66 (0.40) BCD | 44.25 (22.04) A | |
20 min | 18.38 (0.39) BC | 51.67 (13.01) A | |
30 min | 18.78 (0.40) AB | 42.07 (17.59) A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Packaeser, M.G.; Santana, A.C.; Dal Piva, A.M.d.O.; Kleverlaan, C.J.; Tribst, J.P.M. Optimizing Post-Processing Parameters of 3D-Printed Resin for Surgical Guides. J. Compos. Sci. 2025, 9, 553. https://doi.org/10.3390/jcs9100553
Packaeser MG, Santana AC, Dal Piva AMdO, Kleverlaan CJ, Tribst JPM. Optimizing Post-Processing Parameters of 3D-Printed Resin for Surgical Guides. Journal of Composites Science. 2025; 9(10):553. https://doi.org/10.3390/jcs9100553
Chicago/Turabian StylePackaeser, Maria Gabriela, Alexander Christiaan Santana, Amanda Maria de Oliveira Dal Piva, Cornelis Johannes Kleverlaan, and João Paulo Mendes Tribst. 2025. "Optimizing Post-Processing Parameters of 3D-Printed Resin for Surgical Guides" Journal of Composites Science 9, no. 10: 553. https://doi.org/10.3390/jcs9100553
APA StylePackaeser, M. G., Santana, A. C., Dal Piva, A. M. d. O., Kleverlaan, C. J., & Tribst, J. P. M. (2025). Optimizing Post-Processing Parameters of 3D-Printed Resin for Surgical Guides. Journal of Composites Science, 9(10), 553. https://doi.org/10.3390/jcs9100553