Crown-Tulip Trigger Mechanisms to Improve Crashworthiness Design of Composite Tubular Structures
Abstract
1. Introduction
2. Preliminary Crown-Tulip Trigger Concept
- The reduced initial contact area produces a reduced initial contact force. This is attributed to the reduction in localised structure stiffness at the trigger region, thus enabling the onset of progressive failure.
- For tulip-based trigger mechanisms, the leading tulip angle is proportional to the initial linear crush force gradient and inversely proportional to the total crush distance, influencing the SE.
3. Experimental Studies
3.1. Manufacturing of Specimens
3.2. Experimental Testing Process
3.3. The 45° Bevel Trigger Testing Results
3.4. The 4T90° Tulip Trigger Testing Results
3.5. The 4T140°-20°-20 mm-Ø5 mm Testing Results
3.6. Comparison of Experimental Testing Trigger Designs
4. Numerical Modelling
4.1. General Contact Definitions
4.2. Optimised, MAT 55: Enhanced Composites Damage Material Definition
5. Results and Discussions
5.1. The 4T90° Tulip Trigger
5.2. Crown-Tulip Trigger
6. Numerical Crown-Tulip Trigger Design Development
6.1. Crown-Tulip Notch Angle—I
6.2. Crown-Tulip Notch Angle—II
6.3. Crown-Tulip Notch Depth
6.4. Crown-Tulip No. Tips
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
CFE | Crush force efficiency |
SEA | Specific energy absorption |
SE | Stroke efficiency |
KE | Kinetic energy |
ρ | Density |
E | Young’s modulus |
F | Load |
Fmax | Initial maximum load |
Fm | Mean load |
G | Fracture toughness |
G12 | Shear modulus |
GIC | Mode-I interlaminar fracture toughness |
GIIC | Mode-II interlaminar fracture toughness |
SEA | Specific energy absorption (kJ/kg) |
t | Wall thickness |
n | Number of axial splits |
μ | Coefficient of friction |
δ | Displacement |
σn | Normal stresses |
σs | Shear stresses |
τs, S2 | Shear strength |
NFLS | Normal failure stress |
SFLS | Shear failure strength |
SOFT | Softening reduction factor for material strength in crash front elements |
TFAIL | Time step size criterion for element deletion |
PARAM | Critical normal separation of the surface |
4T90° | Trigger mechanism with 90-degree angle |
4T140°-20° | Trigger mechanism with 140-degree, 20-degree, and 20-degree angles |
References
- Atthapreyangkul, A.; Prusty, B.G. Experimental and numerical analysis on the geometrical parameters towards the maximum SEA of CFRP components. Compos. Struct. 2017, 164, 229–236. [Google Scholar] [CrossRef]
- Chatla, P. LS-Dyna for Crashworthiness of Composite Structures. Master’s Thesis, University of Cincinnati, Cincinnati, OH, USA, 2012. [Google Scholar]
- Palanivelu, S.; Van Paepegem, W.; Degrieck, J.; Kakogiannis, D.; Van Ackeren, J.; Van Hemelrijck, D.; Wastiels, J.; Vantomme, J. Comparative study of the quasi-static energy absorption of small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures. Polym. Test. 2010, 29, 381–396. [Google Scholar] [CrossRef]
- Palanivelu, S.; Van Paepegem, W.; Degrieck, J.; Vantomme, J.; Kakogiannis, D.; Van Ackeren, J.; Van Hemelrijck, D.; Wastiels, J. Crushing and energy absorption performance of different geometrical shapes of small-scale glass/polyester composite tubes under quasi-static loading conditions. Compos. Struct. 2011, 93, 992–1007. [Google Scholar] [CrossRef]
- Farley, G.L. The Effects of Crushing Speed on the Energy-Absorption Capability of Composite Tubes. J. Compos. Mater. 1991, 25, 1244–1390. [Google Scholar] [CrossRef]
- Farley, G.L.; Aerostructures Directorate. Effect of Specimen Geometry on the Energy Absorption Capability of Composite Materials. J. Compos. Mater. 1986, 20, 322–408. [Google Scholar] [CrossRef]
- de la Cuesta, J.J.; Ghasemnejad, H. Improvement of Force History Pattern in Composite Tubular Structures by Developed Trigger Mechanisms. Appl. Compos. Mater. 2022, 29, 1771–1794. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X. On a new crush trigger for energy absorption of composite tubes. Int. J. Crashworthiness 2010, 15, 625–634. [Google Scholar] [CrossRef]
- Huang, J.C.; Wang, X.W. Effect of the SMA trigger on the energy absorption characteristics of CFRP circular tubes. J. Compos. Mater. 2010, 44, 639–651. [Google Scholar] [CrossRef]
- Jiang, H.; Ren, Y.; Gao, B.; Xiang, J.; Yuan, F.G. Design of novel plug-type triggers for composite square tubes: Enhancement of energy-absorption capacity and inducing failure mechanisms. Int. J. Mech. Sci. 2017, 131–132, 113–136. [Google Scholar] [CrossRef]
- Siromani, D.; Henderson, G.; Mikita, D.; Mirarchi, K.; Park, R.; Smolko, J.; Awerbuch, J.; Tan, T.M. An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression. Compos. Part A Appl. Sci. Manuf. 2014, 64, 25–35. [Google Scholar] [CrossRef]
- Rabiee, A.; Ghasemnejad, H. Lightweight design to improve crushing behaviour of multi-stitched composite tubular structures under impact loading. Thin-Walled Struct. 2019, 135, 109–122. [Google Scholar] [CrossRef]
- Cheng, Q.; Altenhof, W.; Jin, S.Y.; Powell, C.; Harte, A.M. Energy absorption of aluminum foam filled braided stainless-steel tubes under quasi-static tensile loading conditions. Int. J. Mech. Sci. 2006, 48, 1223–1233. [Google Scholar] [CrossRef]
- Cherniaev, A.; Montesano, J.; Butcher, C. Modeling the Axial Crush Response of CFRP Tubes using MAT054, MAT058 and MAT262 in LS-DYNA®. In Proceedings of the 15th International LS-DYNA Users Conference, Dearborn, MI, USA, 10–12 June 2018. [Google Scholar]
- Chiu, L.N.S.; Falzon, B.G.; Boman, R.; Chen, B.; Yan, W. Finite element modelling of composite structures under crushing load. Compos. Struct. 2015, 131, 215–228. [Google Scholar] [CrossRef]
- Costas, M.; Díaz, J.; Romera, L.; Hernández, S. A multi-objective surrogate-based optimization of the crashworthiness of a hybrid impact absorber. Int. J. Mech. Sci. 2014, 88, 46–54. [Google Scholar] [CrossRef]
- Czaplicki, M.J.; Robertson, R.E.; Thornton, P.H. Comparison of Bevel and Tulip Triggered Pultruded Tubes for Energy Absorption. Compos. Sci. Technol. 1991, 40, 31–46. [Google Scholar] [CrossRef]
- Jiménez, M.A.; Miravete, A.; Larrodé, E.; Revuelta, D. Effect of trigger geometry on energy absorption in composite profiles. Compos. Struct. 2000, 48, 107–111. [Google Scholar] [CrossRef]
- Feraboli, P.; Wade, B.; Deleo, F.; Rassaian, M.; Higgins, M.; Byar, A. LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1809–1825. [Google Scholar] [CrossRef]
- Ghasemnejad, H.; Hadavinia, H.; Aboutorabi, A. Effect of delamination failure in crashworthiness analysis of hybrid composite box structures. Mater. Des. 2010, 31, 1105–1116. [Google Scholar] [CrossRef]
- Ghasemnejad, H.; Blackman, B.R.K.; Hadavinia, H.; Sudall, B. Experimental studies on fracture characterisation and energy absorption of GFRP composite box structures. Compos. Struct. 2009, 88, 253–261. [Google Scholar] [CrossRef]
- Rabiee, A. Lightweight Design of Multi-Stitched Composite Crash Absorbers to Improve Specific Energy Absorption Capability under Quasi-Static and Impact Loading. Ph.D. Thesis, Cranfield University, Bedford, UK, 2018; pp. 8–181. [Google Scholar]
- Rabiee, A.; Ghasemnejad, H. Finite Element Modelling Approach for Progressive Crushing of Composite Tubular Absorbers in LS-DYNA: Review and Findings. J. Compos. Sci. 2022, 6, 11. [Google Scholar] [CrossRef]
- Rabiee, A.; Ghasemnejad, H. Progressive Crushing of Polymer Matrix Composite Tubular Structures: Review. Open J. Compos. Mater. 2017, 7, 14–48. [Google Scholar] [CrossRef]
- Ramírez, J.G.; Ghasemnejad, H. Z-Pinning Techniques to Improve Energy Absorption Capabilities of CFRP Tubular Structures. Appl. Compos. Mater. 2023, 30, 1529–1545. [Google Scholar] [CrossRef]
- Fu, J.; Liu, Q.; Liu, X.; Zhang, Y. Crashworthiness design of concave polygonal CFRP tubes for eVTOL applications under multi-angle compression loading. Def. Technol. 2025; in press. [Google Scholar] [CrossRef]
MAT 55: Enhanced Composite Damage Card | ||||
---|---|---|---|---|
ρ (kg/m3) | ||||
1500 | ||||
Elastic Properties | ||||
Ea (GPa) | Eb (GPa) | GAB (GPa) | PRBA | |
119.3 | 8.2 | 3.6 | 0.01 | |
GBC (GPa) | GCA (GPa) | GCA (GPa) | ||
2.7 | 3.9 | 3.9 | ||
Failure Strength Properties | ||||
Xc (MPa) | Xt (MPa) | Yc (MPa) | Yt (MPa) | SC (MPa) |
800 | 1710 | 150 | 40.05 | 74.25 |
Failure Strain Properties | ||||
DFAILM | DFAILT | DFAILS | DFAILC | |
0.0176 | 0.014 | 0.015 | −0.005 | |
Numerical Properties | ||||
TFAIL | ALPHA | SOFT | YCFRAC | BETA |
0.6 | 0 | 0.7 | 2 | 0 |
FBRT | SOFT2 | EFS | CRIT | |
0 | 1 | 0 | 55 |
4T90° Tulip Crash-Worthiness Parameters | |||||||
---|---|---|---|---|---|---|---|
Fm (kN) | Fmax (kN) | SEA (kJ/kg) | CFE (%) | SE (%) | Mass (g) | ||
Simulation | 22 | 37 | 40 | 59 | 30 | 25 | - |
Error | 0% | 0% | 2% | 0% | −2% | −2% | 0.20% |
Testing | 22 | 37 | 39 | 59 | 31 | 25 | - |
4T140°-20°-20 mm-Ø5 mm Crown-Tulip Trigger Simulation and Experimental Testing Comparison | |||||||
---|---|---|---|---|---|---|---|
Fm (kN) | Fmax (kN) | SEA (kJ/kg) | CFE (%) | SE (%) | Mass (g) | ||
Simulation | 26 | 40 | 41 | 63 | 26 | 24 | |
Error | 0% | 4% | −1% | −5% | 0% | 1% | 0.40% |
Test Average | 26 | 39 | 41 | 67 | 26 | 24 |
Varied Crown-Notch Angles Calculated ± | ||||||
---|---|---|---|---|---|---|
Fm (kN) | Fmax (kN) | SEA (kJ/kg) | CFE (%) | SE (%) | Mass (g) | |
60° | 30 | 57 | 43 | 53 | 22 | 23 |
Delta | 13% | 59% | 16% | −29% | −13% | −15% |
50° | 30 | 42 | 42 | 70 | 22 | 24 |
Delta | 10% | 18% | 12% | −7% | −11% | −12% |
40° | 31 | 42 | 45 | 74 | 21 | 22 |
Delta | 17% | 19% | 20% | −1% | −16% | −18% |
30° | 31 | 41 | 45 | 77 | 21 | 23 |
Delta | 17% | 15% | 19% | 2% | −15% | −16% |
20° | 28 | 38 | 39 | 74 | 24 | 26 |
Delta | 4% | 5% | 5% | −1% | −4% | −4% |
15° | 27 | 36 | 37 | 75 | 25 | 27 |
Tulip-Crown Trigger Crashworthiness Parameters | |||||||
---|---|---|---|---|---|---|---|
Notch Depth Influence, for 4T160°-40° | |||||||
Energy (J) | Fm (kN) | Fmax (kN) | SEA (kJ/kg) | CFE (%) | SE (%) | Mass (g) | |
4T160°-40°-10 mm | 994 | 27 | 33 | 38 | 80 | 25 | 26 |
0% | −8% | −48% | −4% | 78% | 8% | 4% | |
4T160°-40°-8 mm | 994 | 31 | 39 | 44 | 78 | 22 | 22 |
0% | 7% | −38% | 11% | 73% | −7% | −10% | |
4T160°-40°-5 mm | 993 | 33 | 48 | 46 | 68 | 20 | 21 |
0% | 13% | −25% | 15% | 50% | −12% | −14% | |
4T160°-40°-3 mm | 992 | 32 | 49 | 45 | 65 | 21 | 22 |
0% | 12% | −23% | 13% | 45% | −11% | −12% | |
4T160°-40°-2 mm | 992 | 34 | 44 | 48 | 77 | 19 | 21 |
0% | 18% | −30% | 20% | 70% | −16% | −17% | |
4T160°-40°-1 mm | 994 | 33 | 43 | 47 | 78 | 20 | 21 |
0% | 15% | −33% | 16% | 72% | −13% | −14% | |
4T160 | 996 | 29 | 64 | 40 | 45 | 23 | 25 |
No. Crown-Notch Tips Influence, for T160°-40° Variant | |||||||
---|---|---|---|---|---|---|---|
Energy (J) | Fm (kN) | Fmax (kN) | SEA (kJ/kg) | CFE (%) | SE (%) | Mass (g) | |
6T160°-40°-2 mm | 994 | 32 | 48 | 45 | 68 | 21 | 22 |
4T160°-40°-2 mm | 992 | 34 | 44 | 48 | 77 | 19 | 21 |
Delta | 0% | −5% | 7% | −7% | −11% | 5% | 8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padayachee, R.; Ghasemnejad, H. Crown-Tulip Trigger Mechanisms to Improve Crashworthiness Design of Composite Tubular Structures. J. Compos. Sci. 2025, 9, 514. https://doi.org/10.3390/jcs9100514
Padayachee R, Ghasemnejad H. Crown-Tulip Trigger Mechanisms to Improve Crashworthiness Design of Composite Tubular Structures. Journal of Composites Science. 2025; 9(10):514. https://doi.org/10.3390/jcs9100514
Chicago/Turabian StylePadayachee, Rohin, and Hessam Ghasemnejad. 2025. "Crown-Tulip Trigger Mechanisms to Improve Crashworthiness Design of Composite Tubular Structures" Journal of Composites Science 9, no. 10: 514. https://doi.org/10.3390/jcs9100514
APA StylePadayachee, R., & Ghasemnejad, H. (2025). Crown-Tulip Trigger Mechanisms to Improve Crashworthiness Design of Composite Tubular Structures. Journal of Composites Science, 9(10), 514. https://doi.org/10.3390/jcs9100514