Advancing Photodynamic Therapy Efficiency on MCF-7 Breast Cancer Cells through Silica Nanoparticles-Safranin Encapsulation: In-Vitro Evaluation
Abstract
:1. Introduction
2. Materials and Method
3. Results and Discussion
3.1. Characterization of the SF-SiNPs
3.2. Cytotoxicity of Naked and Encapsulated SF on MCF-7 Cells
3.3. The Optimal Concentration of Encapsulated and Naked SF
3.4. The Optimal Exposure Time for Encapsulated and Naked SF
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schuitmaker, J.J.; Baas, P.; van Leengoed, H.L.; van der Meulen, F.W.; Star, W.M.; van Zandwijk, N. Photodynamic therapy: A promising new modality for the treatment of cancer. J. Photochem. Photobiol. B Biol. 1996, 34, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Liu, J.; Fan, J.; Chao, H.; Peng, X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: From molecular design to application. Chem. Soc. Rev. 2021, 50, 4185–4219. [Google Scholar] [CrossRef] [PubMed]
- Al Akhras, M.A.H.; Aljarrah, K.; Makhadmeh, G.N.; Shorman, A. Introducing the Effect of Chinese Chlorella as a Photosensitizing Drug at Different Temperatures. J. Mol. Pharm. Org. Process. Res. 2013, 1, e109. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Li, H.; Zhang, L.; Wang, P.; Lv, Y.; Sun, Z.; Tan, J.; Yuan, Q.; Tan, W. Ferrocene-Containing Nucleic Acid-Based Energy-Storage Nanoagent for Continuously Photo-Induced Oxidative Stress Amplification. Angew. Chem. Int. Ed. 2022, 61, e202200237. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Xu, H.; Park, E.J.; Philbert, M.A.; Kopelman, R. Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness. Biochem. Biophys. Res. Commun. 2008, 369, 579–583. [Google Scholar] [CrossRef] [Green Version]
- Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012, 64, 1020–1037. [Google Scholar] [CrossRef]
- Abuelsamen, A.; Mahmud, S.; Kaus, N.H.M.; Farhat, O.F.; Mohammad, S.M.; Al-Suede, F.S.R.; Majid, A.M.S.A. Novel Pluronic F-127-coated ZnO nanoparticles: Synthesis, characterization, and their in-vitro cytotoxicity evaluation. Polym. Adv. Technol. 2021, 32, 2541–2551. [Google Scholar] [CrossRef]
- Xiong, R.; Hua, D.; Van Hoeck, J.; Berdecka, D.; Léger, L.; De Munter, S.; Fraire, J.C.; Raes, L.; Harizaj, A.; Sauvage, F.; et al. Photothermal nanofibres enable safe engineering of therapeutic cells. Nat. Nanotechnol. 2021, 16, 1281–1291. [Google Scholar] [CrossRef]
- Bharali, D.J.; Klejbor, I.; Stachowiak, E.K.; Dutta, P.; Roy, I.; Kaur, N.; Bergey, E.J.; Prasad, P.N.; Stachowiak, M.K. Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. USA 2005, 102, 11539–11544. [Google Scholar] [CrossRef]
- Xiong, R.; Xu, R.X.; Huang, C.; De Smedt, S.; Braeckmans, K. Stimuli-responsive nanobubbles for biomedical applications. Chem. Soc. Rev. 2021, 50, 5746–5776. [Google Scholar] [CrossRef]
- Kneuer, C.; Sameti, M.; Haltner, E.G.; Schiestel, T.; Schirra, H.; Schmidt, H.; Lehr, C.-M. Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. Int. J. Pharm. 2000, 196, 257–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santra, S.; Yang, H.; Dutta, D.; Stanley, J.T.; Holloway, P.H.; Tan, W.; Moudgil, B.M.; Mericle, R.A. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem. Commun. 2004, 2810–2811. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Sun, X.; Wang, W.; Yang, D.; Yang, C.; Shen, Q.; Shao, J. Diketopyrrolopyrrole-derived organic small molecular dyes for tumor phototheranostics. Chin. Chem. Lett. 2021, 33, 1681–1692. [Google Scholar] [CrossRef]
- Alzoubi, F.; Abu Noqta, O.; AlZoubi, T.; AlJabaly, H.; Alkhateeb, H.; Alqadi, M.; Makhadmeh, G. Exploring the impact of pH on the properties of citric acid-coated iron oxide nanoparticles as high-performance T2 contrast agent for MRI applications. Results Eng. 2023, 18, 101206. [Google Scholar] [CrossRef]
- Rad, A.T.; Chen, C.-W.; Aresh, W.; Xia, Y.; Lai, P.-S.; Nieh, M.-P. Combinational Effects of Active Targeting, Shape, and Enhanced Permeability and Retention for Cancer Theranostic Nanocarriers. ACS Appl. Mater. Interfaces 2019, 11, 10505–10519. [Google Scholar] [CrossRef]
- Iturrioz-Rodríguez, N.; Correa-Duarte, M.A.; Fanarraga, M.L. Controlled drug delivery systems for cancer based on mesoporous silica nanoparticles. Int. J. Nanomed. 2019, 14, 3389–3401. [Google Scholar] [CrossRef] [Green Version]
- Abd-El-Aziz, H.S.; Habit, A.T. The Toxicity Effect of Certain Photosensitizing Compounds on Some Biological Aspects of Field Strain of Agrotis ipsilon (Hufnagel) Larvae. Egypt. Acad. J. Biol. Sci. F Toxicol. Pest Control 2021, 13, 195–208. [Google Scholar] [CrossRef]
- Saha, I.; Kumar, G.S. Spectroscopic Characterization of the Interaction of Phenosafranin and Safranin O with Double Stranded, Heat Denatured and Single Stranded Calf Thymus DNA. J. Fluoresc. 2010, 21, 247–255. [Google Scholar] [CrossRef]
- Kenley, R.A.; Kirshen, N.A.; Mill, T. Photooxidation of Di-n-butyl Sulfide Using Sensitizers Immobilized in Polymer Films. Macromolecules 1980, 13, 808–815. [Google Scholar] [CrossRef]
- Zweig, A.; Henderson, W.A., Jr. Singlet oxygen and polymer photooxidations. I. Sensitizers, quenchers, and reactants. J. Polym. Sci. Polym. Chem. Ed. 1975, 13, 717–736. [Google Scholar] [CrossRef]
- Albiter, E.; Alfaro, S.; Valenzuela, M.A. Photosensitized Oxidation of 9,10-Dimethylanthracene on Dye-Doped Silica Composites. Int. J. Photoenergy 2012, 2012, 987606. [Google Scholar] [CrossRef]
- Kaur, S.; Rani, S.; Mahajan, R.; Asif, M.; Gupta, V.K. Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics. J. Ind. Eng. Chem. 2014, 22, 19–27. [Google Scholar] [CrossRef]
- Malekbala, M.R.; Hosseini, S.; Yazdi, S.K.; Soltani, S.M.; Malekbala, M.R. The study of the potential capability of sugar beet pulp on the removal efficiency of two cationic dyes. Chem. Eng. Res. Des. 2012, 90, 704–712. [Google Scholar] [CrossRef]
- Shariati, S.; Faraji, M.; Yamini, Y.; Rajabi, A.A. Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions. Desalination 2011, 270, 160–165. [Google Scholar] [CrossRef]
- Beech, S.J.; Noimark, S.; Page, K.; Noor, N.; Allan, E.; Parkin, I.P. Incorporation of crystal violet, methylene blue and safranin O into a copolymer emulsion; the development of a novel antimicrobial paint. RSC Adv. 2015, 5, 26364–26375. [Google Scholar] [CrossRef]
- Jankowski, A.; Jankowski, S.; Mirończyk, A.; Niedbach, J. The action of photosensitizers and serum in a bactericidal process. II. The effects of dyes: Hypericin, eosin Y and saphranine O. Pol. J. Microbiol. 2005, 54, 323–330. [Google Scholar]
- Voos, A.C.; Kranz, S.; Tonndorf-Martini, S.; Voelpel, A.; Sigusch, H.; Staudte, H.; Albrecht, V.; Sigusch, B.W. Photodynamic antimicrobial effect of safranine O on an ex vivo periodontal biofilm. Lasers Surg. Med. 2014, 46, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Sasnauskiene, A.; Kadziauskas, J.; Vezelyte, N.; Jonusiene, V.; Kirveliene, V. Apoptosis, autophagy and cell cycle arrest following photodamage to mitochondrial interior. Apoptosis 2009, 14, 276–286. [Google Scholar] [CrossRef]
- Mekkawy, A.I.; Eleraky, N.E.; Soliman, G.M.; Elnaggar, M.G.; Elnaggar, M.G. Combinatorial Therapy of Letrozole- and Quercetin-Loaded Spanlastics for Enhanced Cytotoxicity against MCF-7 Breast Cancer Cells. Pharmaceutics 2022, 14, 1727. [Google Scholar] [CrossRef]
- Bielack, S.S.; Kempf-Bielack, B.; Delling, G.; Exner, G.U.; Flege, S.; Helmke, K.; Kotz, R.; Salzer-Kuntschik, M.; Werner, M.; Winkelmann, W.; et al. Prognostic Factors in High-Grade Osteosarcoma of the Extremities or Trunk: An Analysis of 1,702 Patients Treated on Neoadjuvant Cooperative Osteosarcoma Study Group Protocols. J. Clin. Oncol. 2002, 20, 776–790. [Google Scholar] [CrossRef]
- Whelan, J.S.; Jinks, R.C.; McTiernan, A.; Sydes, M.R.; Hook, J.M.; Trani, L.; Uscinska, B.; Bramwell, V.; Lewis, I.J.; Nooij, M.A.; et al. Survival from high-grade localised extremity osteosarcoma: Combined results and prognostic factors from three European Osteosarcoma Intergroup randomised controlled trials. Ann. Oncol. 2012, 23, 1607–1616. [Google Scholar] [CrossRef]
- Prathyusha, E.; Prabakaran, A.; Ahmed, H.; Dethe, M.R.; Agrawal, M.; Gangipangi, V.; Sudhagar, S.; Krishna, K.V.; Dubey, S.K.; Pemmaraju, D.B.; et al. Investigation of ROS generating capacity of curcumin-loaded liposomes and its in vitro cytotoxicity on MCF-7 cell lines using photodynamic therapy. Photodiagn. Photodyn. Ther. 2022, 40, 103091. [Google Scholar] [CrossRef] [PubMed]
- Roy, I.; Ohulchanskyy, T.Y.; Pudavar, H.E.; Bergey, E.J.; Oseroff, A.R.; Morgan, J.; Dougherty, T.J.; Prasad, P.N. Ceramic-Based Nanoparticles Entrapping Water-Insoluble Photosensitizing Anticancer Drugs: A Novel Drug–Carrier System for Photodynamic Therapy. J. Am. Chem. Soc. 2003, 125, 7860–7865. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.K.; Fong, L.S.; Zhang, Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Deliv. Rev. 2008, 60, 1627–1637. [Google Scholar] [CrossRef] [PubMed]
- Makhadmeh, G.N.; Abuelsamen, A.; Al-Akhras, M.-A.H.; Aziz, A.A. Silica Nanoparticles Encapsulated Cichorium Pumilum as a Promising Photosensitizer for Osteosarcoma Photodynamic Therapy: In-vitro study. Photodiagn. Photodyn. Ther. 2022, 38, 102801. [Google Scholar] [CrossRef]
- Makhadmeh, G.N.; Aziz, A.A.; Razak, K.A.; Abu Noqta, O. Encapsulation efficacy of natural and synthetic photosensitizers by silica nanoparticles for photodynamic applications. IET Nanobiotechnol. 2015, 9, 381–385. [Google Scholar] [CrossRef]
- Erickson, A.J.; Weiss, P.T.; Gulliver, J.S. Stormwater Treatment: Assessment and Maintenance; St. Anthony Falls Laboratory: Minneapolis, MN, USA, 2010. [Google Scholar]
- Aditya, A.; Chattopadhyay, S.; Jha, D.; Gautam, H.K.; Maiti, S.; Ganguli, M. Zinc Oxide Nanoparticles Dispersed in Ionic Liquids Show High Antimicrobial Efficacy to Skin-Specific Bacteria. ACS Appl. Mater. Interfaces 2018, 10, 15401–15411. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.; Zhang, Y.; Zhang, G.; Kang, Y.; Chen, A.; Feng, X.; Shao, L. The toxicity of silica nanoparticles to the immune system. Nanomedicine 2018, 13, 1939–1962. [Google Scholar] [CrossRef] [Green Version]
- Al Jarrah, K.; Al-Akhras, M.-A.H.; Makhadmeh, G.N.; AlZoubi, T.; Abuelsamen, A.; Zyoud, S.H.; Mhareb, M.A.; Aziz, A.A.; Abu Noqta, O. A Novel Approach for Enhanced Osteosarcoma Photodynamic Therapy Using Encapsulated Methylene Blue in Silica Nanoparticles. J. Compos. Sci. 2023, 7, 137. [Google Scholar] [CrossRef]
- Makhadmeh, G.N.; Abdul Aziz, A. Photodynamic application of protoporphyrin IX as a photosensitizer encapsulated by silica nanoparticles. Artif. Cells Nanomed. Biotechnol. 2018, 46, S1043–S1046. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljarrah, K.; Al-Akhras, M.-A.H.; Makhadmeh, G.N.; AlZoubi, T.; Masadeh, M.M.; Mhareb, M.H.A.; Zyoud, S.H.; Abu Noqta, O. Advancing Photodynamic Therapy Efficiency on MCF-7 Breast Cancer Cells through Silica Nanoparticles-Safranin Encapsulation: In-Vitro Evaluation. J. Compos. Sci. 2023, 7, 274. https://doi.org/10.3390/jcs7070274
Aljarrah K, Al-Akhras M-AH, Makhadmeh GN, AlZoubi T, Masadeh MM, Mhareb MHA, Zyoud SH, Abu Noqta O. Advancing Photodynamic Therapy Efficiency on MCF-7 Breast Cancer Cells through Silica Nanoparticles-Safranin Encapsulation: In-Vitro Evaluation. Journal of Composites Science. 2023; 7(7):274. https://doi.org/10.3390/jcs7070274
Chicago/Turabian StyleAljarrah, Khaled, M-Ali H. Al-Akhras, Ghaseb N. Makhadmeh, Tariq AlZoubi, Majed M. Masadeh, M. H. A. Mhareb, Samer H. Zyoud, and Osama Abu Noqta. 2023. "Advancing Photodynamic Therapy Efficiency on MCF-7 Breast Cancer Cells through Silica Nanoparticles-Safranin Encapsulation: In-Vitro Evaluation" Journal of Composites Science 7, no. 7: 274. https://doi.org/10.3390/jcs7070274