A Nonlinear Free Vibration Analysis of Functionally Graded Beams Using a Mixed Finite Element Method and a Comparative Artificial Neural Network
Abstract
:1. Introduction
2. Weak-Form Formulation of the Nonlinear Mixed TBT
3. The MP BPNN
3.1. Feeding Forward Process
3.2. Backpropagation Process
- (1)
- When the root of the mean square relative error Re was less than 10−5, i.e.,
- (2)
- When the number of iterations was greater than 20,000.
4. Illustrative Examples
4.1. Large Amplitude-Free Vibration Analysis Using the Mixed FE Method
4.2. Large Amplitude–Free Vibration Analysis Using the Developed MP BPNN
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koizumi, M. Recent progress of functionally graded materials in Japan. Ceram. Eng. Sci. Proc. 1992, 13, 333–347. [Google Scholar]
- Koizumi, M. FGM activities in Japan. Compos. Part B 1997, 28, 1–4. [Google Scholar] [CrossRef]
- Jha, D.K.; Kant, T.; Singh, R.K. A critical review of recent research on functionally graded plates. Compos. Struct. 2013, 96, 833–849. [Google Scholar] [CrossRef]
- Shen, H.S. Functionally Graded Materials: Nonlinear Analysis of Plates and Shells; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Chakraborty, A.; Mahapatra, D.R.; Gopalakrishnan, S. Finite element analysis of free vibration and wave propagation in asymmetric composite beams with structural discontinuities. Compos. Struct. 2002, 55, 23–36. [Google Scholar] [CrossRef]
- Chakraborty, A.; Gopalakrishnan, S.; Reddy, J.N. A new beam finite element for analyzing functionally graded materials. Int. J. Mech. Sci. 2003, 45, 519–539. [Google Scholar] [CrossRef]
- Aydogdu, M.; Taskin, V. Free vibration analysis of functionally graded beams with simply supported edges. Mater. Des. 2007, 28, 1651–1656. [Google Scholar] [CrossRef]
- Simsek, M. Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method. Int. J. Eng. Appl. Sci. 2009, 1, 1–11. [Google Scholar]
- Simsek, M. Fundamental frequency analysis of functionally graded beams using different higher-order beam theories. Nucl. Eng. Des. 2010, 240, 697–705. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Farazmandnia, N. Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory. Mech. Adv. Mater. Struct. 2017, 24, 820–829. [Google Scholar] [CrossRef]
- Carrera, E. Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking. Arch. Comput. Methods Eng. 2003, 10, 215–296. [Google Scholar] [CrossRef]
- De Pietro, G.; Hui, Y.; Giunta, G.; Belouettar, S.; Carrera, E.; Hu, H. Hierarchical one-dimensional finite elements for the thermal stress analysis of three-dimensional functionally graded beams. Compos. Struct. 2016, 153, 514–528. [Google Scholar] [CrossRef] [Green Version]
- Coskun, S.; Kim, J.; Toutanji, H. Bending, free vibration, and buckling analysis of functionally graded porous micro-plates using a general third-order plate theory. J. Compos. Sci. 2019, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Tham, V.V.; Quoc, T.H.; Tu, T.M. Free vibration analysis of laminated functionally graded carbon nanotube-reinforced composite doubly curved shallow shell panels using a new four-variable refined theory. J. Compos. Sci. 2019, 3, 104. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.P.; Xu, Z.R. Strong and weak formulations of a mixed higher-order shear deformation theory for the static analysis of functionally graded beams under thermo-mechanical loads. J. Compos. Sci. 2020, 4, 158. [Google Scholar] [CrossRef]
- Wu, C.P.; Li, K.W. Multi-objective optimization of functionally graded beams using a genetic algorithm with non-dominated sorting. J. Compos. Sci. 2021, 5, 92. [Google Scholar] [CrossRef]
- Ma, L.S.; Lee, D.W. Exact solutions for nonlinear static responses of a shear deformable FGM beam under an in-plane thermal loading. Eur. J. Mech. A/Solids 2012, 31, 13–20. [Google Scholar] [CrossRef]
- Zhang, D.G. Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Compos. Struct. 2013, 100, 121–126. [Google Scholar] [CrossRef]
- Salami, S.J. Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets. Phys. E 2016, 76, 187–197. [Google Scholar] [CrossRef]
- Shen, H.S. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 2009, 91, 9–19. [Google Scholar] [CrossRef]
- Ghayesh, M.H. Nonlinear vibrations of axially functionally graded Timoshenko tapered beams. J. Comput. Nonlinear Dyn. 2018, 13, 041002. [Google Scholar] [CrossRef]
- Shen, H.S.; Lin, F.; Xiang, Y. Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments. Nonlinear Dyn. 2017, 90, 899–914. [Google Scholar] [CrossRef]
- Ding, J.; Chu, L.; Xin, L.; Dui, G. Nonlinear vibration analysis of functionally graded beams considering the influences of the rotary inertia of the cross section and neural surface position. Mech. Based Des. Struct. Mach. 2018, 46, 225–237. [Google Scholar] [CrossRef]
- Eltaher, M.A.; Mohamed, N.; Mohamed, S.A.; Seddek, L.F. Periodic and nonperiodic modes of postbuckling and nonlinear vibration of beams attached to nonlinear foundations. Appl. Math. Model. 2019, 75, 414–445. [Google Scholar] [CrossRef]
- Chaudhari, V.K.; Lal, A. Nonlinear free vibration analysis of elastically supported nanotube-reinforced composite beam in thermal environment. Procedia Eng. 2016, 144, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, M.; Kiani, Y. Nonlinear free vibration of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets. Acta Mech. 2016, 227, 1869–1884. [Google Scholar] [CrossRef]
- Babaei, H.; Kiani, Y.; Eslami, M.R. Large amplitude free vibrations of FGM beams on nonlinear elastic foundation in thermal field based on neutral/mid-plane formulations. Iran. J. Sci. Technol. Trans. Mech. Eng. 2021, 45, 611–630. [Google Scholar] [CrossRef]
- Hagan, M.T.; Demuth, H.B.; Beale, M. Neural Network Design; PWS Pub. Comp.: New York, NY, USA, 1995. [Google Scholar]
- Yagawa, G.; Okuda, H. Neural networks in computational mechanics. Arch. Comput. Methods Eng. 1996, 3, 435–512. [Google Scholar] [CrossRef]
- Zhang, Z.; Friedrich, K. Artificial neural networks applied to polymer composites: A review. Compos. Sci. Technol. 2003, 63, 2029–2044. [Google Scholar] [CrossRef]
- Ootao, Y.; Kawamura, R.; Tanigawa, Y.; Nakamura, T. Neural network optimization of material composition of a functionally graded material plate at arbitrary temperature range and temperature rise. Arch. Appl. Mech. 1998, 68, 662–676. [Google Scholar] [CrossRef]
- Ootao, Y.; Kawamura, R.; Tanigawa, Y.; Imamura, R. Optimization of material composition of nonhomogeneous hollow circular cylinder for thermal stress relaxation making use of neural network. J. Therm. Stress. 1999, 22, 1–22. [Google Scholar]
- Chakraverty, S.; Singh, V.P.; Sharma, R.K. Regression based weight generation algorithm in neural network for estimation of frequencies of vibrating plates. Comput. Methods Appl. Mech. Eng. 2006, 195, 4194–4202. [Google Scholar] [CrossRef]
- Reddy, M.R.S.; Reddy, B.S.; Reddy, V.N.; Sreenivasulu, S. Prediction of natural frequency of laminated composite plates using artificial neural networks. Engineering 2012, 4, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Jodaei, A.; Jalal, M.; Yas, M.H. Free vibration analysis of functionally graded annular plates by state-space based differential quadrature method and comparative modeling by ANN. Compos. Part B 2012, 43, 340–353. [Google Scholar] [CrossRef]
- Fetene, B.N.; Shufen, R.; Dixit, U.S. FEM-based neural network modeling of laser-assisted bending. Neural Comput. Appl. 2018, 29, 69–82. [Google Scholar] [CrossRef]
- Subramani, T.; Sharmila, S. Prediction of deflection and stresses of laminated composite plate with artificial network aid. Int. J. Modern Eng. Res. 2014, 4, 51–58. [Google Scholar]
- Liu, X.; Du, X.; Niu, X. A neural network method applied in prediction eigenvalue buckling for sandwich plates. Inform. Technol. J. 2013, 12, 8129–8134. [Google Scholar]
- Reissner, E. On a certain mixed variational theorem and a proposed application. Int. J. Numer. Methods Eng. 1984, 20, 1366–1368. [Google Scholar] [CrossRef]
- Carrera, E. An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates. Compos. Struct. 2000, 50, 183–198. [Google Scholar] [CrossRef]
- Wu, C.P.; Lai, W.W. Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method. Phys. E 2015, 68, 8–21. [Google Scholar] [CrossRef]
- Wu, C.P.; Lai, W.W. Reissner’s mixed variational theorem-based nonlocal Timoshenko beam theory for a single-walled carbon nanotube embedded in an elastic medium and with various boundary conditions. Compos. Struct. 2015, 122, 390–404. [Google Scholar] [CrossRef]
- Sarma, B.S.; Varadan, T.K. Lagrange-type formulation for finite element analysis of non-linear beam vibrations. J. Sound Vib. 1983, 86, 61–70. [Google Scholar] [CrossRef]
- Bhashyam, G.R.; Prathap, G. Galerkin finite element method for nonlinear beam vibrations. J. Sound Vib. 1980, 72, 191–203. [Google Scholar] [CrossRef]
- Elmaguiri, M.N.; Haterbouch, M.; Bouayad, A.; Oussouaddi, O. Geometrically nonlinear free vibration of functionally graded beams. J. Mater. Environ. Sci. 2015, 6, 3620–3633. [Google Scholar]
- Ke, L.L.; Yang, J.; Kitipornchai, S. An analytical study on the nonlinear vibration of functionally graded beams. Meccanica 2010, 45, 743–752. [Google Scholar] [CrossRef]
Theories | ||||
---|---|---|---|---|
1.0 | 2.0 | 3.0 | 4.0 | |
Current four linear elements | 1.1196 | 1.4193 | 1.8117 | 2.2488 |
Current eight linear elements | 1.1187 | 1.4164 | 1.8065 | 2.2412 |
Current 16 linear elements | 1.1187 | 1.4163 | 1.8062 | 2.2407 |
Current four quadratic elements | 1.1173 | 1.4124 | 1.8006 | 2.2342 |
Current eight quadratic elements | 1.1183 | 1.4155 | 1.8053 | 2.2398 |
Current 16 quadratic elements | 1.1186 | 1.4161 | 1.8061 | 2.2406 |
Current four cubic elements | 1.1187 | 1.4164 | 1.8064 | 2.2410 |
Current eight cubic elements | 1.1187 | 1.4162 | 1.8062 | 2.2407 |
Sarma and Varadan [43] | 1.1180 | 1.4142 | 1.8028 | 2.2361 |
Bhashyam and Prathap [44] | 1.1180 | 1.4141 | 1.8027 | 2.2359 |
Boundary Conditions | Theories | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
C-C | 0.3 | Mixed FE method | 1.0305 | 1.1164 | 1.2445 | 1.4017 |
Elmaguiri et al. [45] | 1.0227 | 1.0875 | 1.1869 | 1.3121 | ||
Ke et al. [46] | 1.0220 | 1.0852 | 1.1831 | 1.3079 | ||
1 | Mixed FE method | 1.0304 | 1.1158 | 1.2434 | 1.4000 | |
Elmaguiri et al. [45] | 1.0225 | 1.0871 | 1.1860 | 1.3106 | ||
Ke et al. [46] | 1.0025 | 1.0873 | 1.1874 | 1.3149 | ||
2 | Mixed FE method | 1.0296 | 1.1128 | 1.2374 | 1.3906 | |
Elmaguiri et al. [45] | 1.0215 | 1.0832 | 1.1780 | 1.2980 | ||
Ke et al. [46] | 1.0232 | 1.0900 | 1.1929 | 1.3237 | ||
S-S | 0.3 | Mixed FE method | 1.1492 | 1.4666 | 1.8681 | 2.3102 |
1 | Mixed FE method | 1.1704 | 1.4964 | 1.8993 | 2.3397 | |
2 | Mixed FE method | 1.1695 | 1.4899 | 1.8855 | 2.3182 | |
C-S | 0.3 | Mixed FE method | 1.0696 | 1.2379 | 1.4667 | 1.7299 |
1 | Mixed FE method | 1.0764 | 1.2481 | 1.4779 | 1.7409 | |
2 | Mixed FE method | 1.0755 | 1.2438 | 1.4691 | 1.7272 | |
C-F | 0.3 | Mixed FE method | 1.00004 | 0.99998 | 0.99979 | 0.99948 |
1 | Mixed FE method | 1.00008 | 1.00004 | 0.99989 | 0.99961 | |
2 | Mixed FE method | 1.00006 | 1.00002 | 0.99985 | 0.99956 |
No. Neurons of Each Hidden Layer | No. Hidden Layers (i.e., ) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||||||||
No. Parameters | Training Time (s) | Re of Outputs | No. Parameters | Training Time (s) | Re of Outputs | No. Parameters | Training Time (s) | Re of Outputs | No. Parameters | Training Time (s) | Re of Outputs | |
2 | 14 | 40.99 | 0.2328% | 20 | 116.50 | 0.1913% | 26 | 83.46 | 0.0341% | 32 | 314.25 | 0.0296% |
31.98 | 0.2331% | 170.48 | 0.1917% | 52.81 | 0.1315% | 525.97 | 0.0569% | |||||
32.50 | 0.2331% | 103.02 | 0.2206% | 56.06 | 0.1426% | 107.98 | 0.0572% | |||||
4 | 26 | 45.13 | 0.1393% | 46 | 70.94 | 0.0048% | 66 | 435.87 | 0.0008% | |||
25.45 | 0.1421% | 38.68 | 0.0167% | 188.26 | 0.0043% | |||||||
35.50 | 0.2676% | 124.84 | 0.0168% | 78.46 | 0.0128% | |||||||
6 | 38 | 163.32 | 0.0237% | 80 | 173.84 | 0.0006% | ||||||
55.70 | 0.0338% | 252.95 | 0.0007% | |||||||||
55.11 | 0.0467% | 533.02 | 0.0008% | |||||||||
8 | 50 | 82.67 | 0.0228% | |||||||||
86.69 | 0.0266% | |||||||||||
122.42 | 0.0359% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-P.; Yeh, S.-T.; Liu, J.-H. A Nonlinear Free Vibration Analysis of Functionally Graded Beams Using a Mixed Finite Element Method and a Comparative Artificial Neural Network. J. Compos. Sci. 2023, 7, 229. https://doi.org/10.3390/jcs7060229
Wu C-P, Yeh S-T, Liu J-H. A Nonlinear Free Vibration Analysis of Functionally Graded Beams Using a Mixed Finite Element Method and a Comparative Artificial Neural Network. Journal of Composites Science. 2023; 7(6):229. https://doi.org/10.3390/jcs7060229
Chicago/Turabian StyleWu, Chih-Ping, Shu-Ting Yeh, and Jia-Hua Liu. 2023. "A Nonlinear Free Vibration Analysis of Functionally Graded Beams Using a Mixed Finite Element Method and a Comparative Artificial Neural Network" Journal of Composites Science 7, no. 6: 229. https://doi.org/10.3390/jcs7060229
APA StyleWu, C.-P., Yeh, S.-T., & Liu, J.-H. (2023). A Nonlinear Free Vibration Analysis of Functionally Graded Beams Using a Mixed Finite Element Method and a Comparative Artificial Neural Network. Journal of Composites Science, 7(6), 229. https://doi.org/10.3390/jcs7060229