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Abstract: Based on the Hamilton principle combined with the Timoshenko beam theory, the authors
developed a mixed finite element (FE) method for the nonlinear free vibration analysis of functionally
graded (FG) beams under combinations of simply supported, free, and clamped edge conditions. The
material properties of the FG beam gradually and smoothly varied through the thickness direction
according to the power-law distributions of the volume fractions in the constituents, and the effective
material properties of the FG beam were estimated using the rule of mixtures. The von Kármán
geometrical nonlinearity was considered. The FE solutions of the amplitude-frequency relations of
the FG beam were obtained using an iterative process. Implementing the mixed FE method showed
that its solutions converged rapidly and that the convergent solutions closely agreed with the accurate
solutions reported in the literature. A multilayer perceptron (MP) back propagation neural network
(BPNN) was also developed to predict the nonlinear free vibration behavior of the FG beam. After
appropriate training, the prediction of the MP BPNN’s amplitude-frequency relations was entirely
accurate compared to those obtained using the mixed FE method, and its central processing unit time
was less time-consuming than that of the mixed FE method.

Keywords: artificial neural networks; finite element methods; functionally graded beams; Hamilton’s
principle; mixed Timoshenko beam theory; nonlinear vibration

1. Introduction

In recent years, functionally graded (FG) material, which is composed of a two- or
multi-phase material according to some spatial distributions of the volume fractions of these
constituents, has gradually become an important industrial material and has been used to
form a variety of beam-, plate- and shell-like structures in advanced engineering due to
the flexibility of its application and the continuous distributions of its material properties
over the physical domain of the structures in which it is used [1,2]. FG structures could
be designed to improve their specific structural performances by changing the volume
fractions of the constituents. In addition, FG structures could replace conventional fiber-
reinforced composite (FRC) structures to prevent delamination failure, which often occurs
at the interfaces between the adjacent layers of FRC structures due to the material properties
that suddenly change at such places. Some review articles discussing the development,
manufacture, and application of FG and FRC structures and their corresponding mechanical
analyses can be found in the literature [3,4]. Among these, the review conducted in this
work focuses on the literature related to the linear and nonlinear free vibration analyses of
FG beams with different boundary conditions.

The linear structural analyses of FG beams have been presented. Based on the principle
of virtual displacements (PVD) combined with the first-order shear deformation theory
(FSDT), Chakraborty et al. [5,6] developed a new beam element for the static bending,
thermo-elastic, free vibration, and wave propagation analyses of FG beams. The differences
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between the above-mentioned structural behaviors of the metal-ceramic two-phase FG
beam and those of the pure metal and ceramic beams were highlighted. Aydogdu and
Taskin [7] studied the free vibration responses of FGM beams using various equivalent
single-layered theories (ESLTs), such as the classical beam theory, the FSDT, and the higher-
order shear deformation theory (HSDT). Simsek [8,9] investigated the static bending, free
vibration behaviors of FG beams under various boundary conditions using the HSDT, in
which some effects on the deflection and frequency parameters of the FG beams were
examined, such as the effects of slender ratios, material-property gradient indices, and
different formulations. The HSDT was extended to the thermo-mechanical vibration
analysis of sandwich beams with FG carbon nanotube-reinforced composite (CNTRC) face
sheets by Ebrahimi and Farazmandnia [10]. Using Carrera’s unified formulation (CUF) [11],
Pietro et al. [12] developed a hierarchical one-dimensional finite element method to study
the thermo-elastic response of FG beams. Coskun et al. [13] developed a third-order
plate theory for the static bending, free vibration, and static buckling analyses of FG
porous microplates, where three different porosity distributions through the thickness
direction of the plate were considered. Tham et al. [14] investigated the free vibration
behavior of laminated FG CNTRC doubly curved shallow shells using a new four-variable
refined theory. Wu and Xu [15] presented strong and weak formulations of a mixed
higher-order formulation for the static bending analysis of FG beams when subjected to
thermo-mechanical loads. Based on the mixed higher-order shear deformation theory,
Wu and Li [16] examined the thermal buckling behavior of FG beams, and they also
developed the multi-objective optimization of FG beams to maximize critical temperature
change parameters and minimize the total mass of the FG beam using a non-dominated
sorting-based genetic algorithm.

ESLTs combined with the von Kármán geometrical nonlinearity (VKGN) were also
applied as extensions to FG beams’ geometrical nonlinear static and free vibration analyses.
Ma and Lee [17] presented an exact, closed-form solution for the nonlinear static responses
of single-layered FG beams under different boundary conditions using the FSDT and
accounting for the VKGN. Based on the HSDT and using a physically neutral surface
and the VKGN, Zhang [18] examined the nonlinear bending behavior of single-layered
FG beams using the Ritz method. The HSDT was also extended to a bending analysis
of sandwich beams with CNTRC face sheets by Salami [19] and a nonlinear bending
analysis of FG CNTRC plates in thermal environments by Shen [20]. Based on the FSDT,
Ghayesh [21] investigated the nonlinear forced vibration behavior of axially FG Timoshenko
tapered beams. Shen et al. [22] presented the nonlinear vibration analysis of FG graphene-
reinforced composite laminated beams when resting on elastic foundations in thermal
environments using the HSDT. Ding et al. [23] applied the Euler-Bernoulli beam theory to
the nonlinear vibration analysis of FG beams, in which the effects of the rotary inertia of
the cross-section and the neural surface position were considered. Eltaher et al. [24] carried
out the post-buckling and nonlinear vibration analyses of beams resting on a nonlinear
foundation. Based on Hamilton’s principle, Chaudhari and Lal [25] carried out a nonlinear
free vibration analysis of FG CNTRC beams, which were subjected to thermal loading, in
which the HSDT and the VKGN were used to derive a weak-form formulation, from which
a Lagrangian C0 element with four degrees-of-freedom per node was developed. Based on
the FSDT and combined with the VKGN, Mirzaei and Kiani [26] analyzed the nonlinear
free vibration characteristics of temperature-dependent sandwich beams with CNTRC face
sheets. Based on the third-order shear deformation theory, Babaei et al. [27] investigated
the small- and large-amplitude-free vibration behaviors of FG beams resting on an elastic
foundation consisting of Winkler, shear, and nonlinear springs.

Over the past few decades, artificial neural networks (ANNs) have emerged as useful
mathematical tools with a self-learning ability and have been used in various advanced
engineering applications. The ANN approach was inspired by the biological neural system,
such that its algorithm was designed as a multilayer structure in which each layer consists
of some interconnected neurons. The ANN was trained using some given data sources,
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and the learning experience was stored in the weight numbers and biases, which were used
to connect the relations between the outputs of the last layer and the inputs of each neuron
in the current layer. Due to its superior abilities to handle massively parallel computa-
tion and self-learning, the ANN can be conventionally used in function approximations,
pattern recognition, classification, etc. [28]. Recently, ANNs have further shown their
diverse applications, such as machine learning [29], the modeling of structural and material
behavior [30], and optimal design [31,32].

Chakraverty et al. [33] developed an ANN to estimate the vibration characteristics of
plate structures, in which initial weight numbers were generated using regression analysis.
Reddy et al. [34] used an ANN to predict the natural frequencies of laminated composite
plates under clamped boundary conditions, in which a multilayer perceptron (MP) back
propagation neural network (BPNN) was used, and the data sources obtained using the
linear shell elements were provided for training. Jodaei et al. [35] developed a state space
differential quadrature (SSDQ) method for the free vibration analysis of functionally graded
(FG) annular plates under various boundary conditions, and these SSDQ solutions were
used to train an ANN. Fetene et al. [36] developed a FEM-based neural network for the
inverse prediction of bending a cantilever beam. The comparative modeling of the static
and buckling behavior of laminated composite structures with the aid of ANNs has also
been proposed by Subramani and Sharmila [37] and Liu et al. [38], respectively.

From the above literature survey, the authors found that the analyses mentioned
above were rarely based on the weak-form formulation compared with those based on
the strong-form formulation, and the corresponding equilibrium and motion equations
derived using the Reissner mixed variation theorem (RMVT) were even fewer than those
derived using the PVD, even though RMVT-based models were concluded to be superior
to PVD-based models for the various analyses of plates and shells [11]. Hence, developing
an RMVT-based weak-form formulation for analyzing FG beams is important in academic
research and practical applications. In addition, as mentioned above, ANNs can be used to
predict the structural behavior of FG beams by feeding them suitable data sources; thus,
the development of a competitive ANN algorithm is necessary for future advanced studies
with a lot of time-consuming characteristics, such as nonlinear modeling, optimal design,
system recognition, etc.

In this work, the authors derived a weak-form formulation of an RMVT-based Tim-
oshenko beam theory (TBT) for the large-amplitude free vibration analysis of FG beams
under combinations of simply supported, free, and clamped edge conditions, in which
the VKGN effect was considered. Nonlinear equilibrium equations of the finite element
(FE) method based on the mixed TBT were derived using a variational approach, and
an iterative process was used to obtain the numerical solutions for the issue of interest.
The material properties were assumed to obey the power-law distributions that varied
through the thickness direction of the FG beam according to the volume fractions of the
constituents, and the effective material properties were estimated using the rules of mix-
tures. Four different boundary conditions, simple-simple (S-S), clamped-clamped (C-C),
clamped-simple (C-S), and clamped-free (C-F), were considered. A parametric study of the
critical effects on the amplitude-frequency relations in significant amplitude-free vibration
cases was conducted, including geometrical nonlinearity, boundary conditions, aspect
ratios, and material-property gradient indices. In addition, an MP BPNN was developed to
predict the amplitude-frequency relations of FG beams, in which the Levenberg–Marquardt
algorithm [28] was adopted to speed up the convergence rate of the MP BPNN. Some
critical effects on the performance of the MP BPNN were closely examined, such as the
number of layers used in the ANN and the number of neurons in each layer.

2. Weak-Form Formulation of the Nonlinear Mixed TBT

Based on the mixed TBT, a weak-form formulation for a large amplitude free vibration
analysis of moderately thick FG rectangular beams under various boundary conditions was
developed in this section. The symbols L, h, and b denote the FG beam’s length, thickness,
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and width. In addition, a set of Cartesian coordinates (x, y, z) for the kinematics description
of the FG beam was located at the mid-surface of its left end.

The structural behavior of the FG beam was described using a mixed TBT [39–42], in
which the shear deformation effects were considered to be a constant through the thickness
direction of the FG beam, and the related displacement field was given, as follows:

ux(x, z) = u(x)− zφ(x), (1)

uy(x, z) = 0, (2)

uz(x, z) = w(x), (3)

where ui(x, z) (i = x, y, and z) denote the displacement components of the FG beam in the
x, y, and z directions, respectively. u(x) and w(x) stand for the mid-plane displacement
components of the FG beam in the x and z directions and φ(x) is the total rotation in the
x–z plane.

The strain-displacement relations of the FG beam considering the VKGN effect were
given by:

εx = u,x −z φ,x +(1/2)(w,x)
2, (4)

γxz = −φ + w,x , (5)

εy = εz = γyz = γxy = 0, (6)

where εx, εy, εz, γxz, γyz and γxy are the strain components of the FG beam, and
g,x = ∂g/∂x, in which g = u, w, and φ.

The nonzero stress components of the FG beam were given by:

σx = E
[
u,x −z φ,x +(1/2)(w,x)

2
]
, (7)

τxz = kc G(−φ + w,x), (8)

where G and E are defined as the shear and Young’s moduli of the FG beam, respectively,
and in general, these are specific functions of z, i.e., G = G(z) and E = E(z). kc denotes the
shear stress correction factor of the FG beam, which was taken as 5/6 in this work.

The generalized force resultants, namely the axial force N, moment M, and shear force
Q, of the FG beam, were defined by:

N = Axx u,x −Bxx φ,x +(Axx/2)(w,x)
2, (9)

M = −Bxx u,x +Dxx φ,x −(Bxx/2)(w,x)
2, (10)

Q = −kc Axz(−φ + w,x), (11)

where for an Nl − layered FG beam:

Axx =
Nl

∑
m=1

b
∫ zm

zm−1

E(z) dz, Bxx =
Nl

∑
m=1

b
∫ zm

zm−1

E(z) z dz, Dxx =
Nl

∑
m=1

b
∫ zm

zm−1

E(z) z2 dz, Axz =
Nl

∑
m=1

b
∫ zm

zm−1

G(z) dz,
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where Nl denotes the total number of layers constituting the multi-layered beam, and zm
and zm − 1 are the thickness coordinates of the top and bottom surfaces of the mth-layer
when measured from the mid-surface of the FG beam.

Four different boundary conditions of the FG beam were considered as follows:
Case 1. S-S supported:

u = w = M = 0 at x = 0 and x = L; (12)

Case 2. C-S supported:

u = w = φ = 0 at x = 0,

and u = w = M = 0 at x = L;
(13)

Case 3. C-C supported:

u = w = φ = 0 at x = 0 and x = L; (14)

Case 4. C-F supported:

u = w = φ = 0 at x = 0,

and N = M = Q = 0 at x = L.
(15)

Based on Hamilton’s principle, a weak-form formulation was derived using a varia-
tional approach, in which the RMVT combined with the TBT and VKGN kinematics was
used. The energy functional of the FG beam could be written in the form of:

I =
∫ t2

t1

(T −ΠR) dt, (16)

where T and ΠR represent the kinetic energy and Reissner’s potential energy of the FG
beam, respectively, and can be given by:

T =
Ne
∑

e=1

∫ xe+1
xe

[
(1/2)m0

(
∂u(e)/∂t

)2
+ (1/2)m2

(
∂φ(e)/∂t

)2

+(1/2)m0

(
∂w(e)/∂t

)2
−m1

(
∂u(e)/∂t

)(
∂φ(e)/∂t

)]
dx,

(17)

ΠR =
Ne
∑

e=1

∫ xe+1
xe

{
N(e)

[
u(e),x +(1/2)

(
w(e),x

)2
]
+ M(e)

(
φ(e),x

)
+ Q(e)

(
φ(e) − w(e),x

)
− (SAxx/2)

(
N(e)

)2
− (SDxx/2)

(
M(e)

)2

−SBxx

(
N(e)

)(
M(e)

)
− [1/(2kc Axz)]

(
Q(e)

)2
}

dx + N0 u0 − NL uL + M0φ0 −MLφL −V0w0 + VLwL,
(18)

where the superscript e denotes a typical beam element, Ne denotes the total number of
beam elements constituting the FG beam; m0, m1, and m2 are the mass of the cross-sectional
area and its moment of inertia, and are given by m0 =

∫
A ρ dA, m1 =

∫
A ρ z dA, and

m2 =
∫

A ρ z2 dA; δkl is the Kronecker delta symbol, in which δkl = 1 when k = l, while
δkl = 0 when k 6= l; SAxx = Dxx/(AxxDxx − BxxBxx), SBxx = Bxx/(AxxDxx − BxxBxx), and
SDxx = Axx/(AxxDxx − BxxBxx); when the material properties constituting the FG beam
were symmetric with respect to the mid-surface, Bxx = 0; otherwise, Bxx 6= 0. In addition,
the variables, N0, NL, M0, ML, V0 , and VL, represented the applied axial forces, moments,
and shear forces of the FG beam at the edges.

Based on the RMVT-based TBT, the generalized displacement variables u(e), w(e),
and φ(e) and the generalized force resultant variables N(e), M(e), and Q(e) of each element
were selected as the primary variables subject to variation, and the time function of each
field variable was assumed to be the harmonic function, i.e., F(e)(x, z, t) = F̃(e)(x, z) ei ω t,
in which t represents the time variable, and ω is the natural frequency of the FG beam.
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Then, by applying Hamilton’s principle and imposing the continuity conditions at the
nodes of the beam element, the authors finally obtained the motion equations of the loaded
FG beam, as follows:

Ne
∑

e=1





0 0 0 k(e)14 0 0

0 0 0 0 0 k(e)26

0 0 0 0 k(e)35 k(e)36

k(e)41 0 0 k(e)44 k(e)45 0

0 0 0 k(e)54 k(e)55 0

0 k(e)62 k(e)63 0 0 k(e)66



(m)

+



0 0 0 0 0 0

0 g(e)22 0 0 0 0

0 0 0 0 0 0

0 g(e)42 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



(m−1)

−ω2



m(e)
11 0 m(e)

13 0 0 0

0 m(e)
22 0 0 0 0

m(e)
31 0 m(e)

33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



(m)



u(e)j

w(e)
j

φ
(e)
j

N(e)
j

M(e)
j

Q(e)
j



(m)

i=j=1,..., nd

=
Ne
∑

e=1





0

0

0

0

0

0



(m)
i=1,..., nd

, (19)

where k(e)ij , g(e)ij and m(e)
ij are relevant coefficients and the superscripts m and (m − 1)

refer to the mth and (m − 1)th iterative processes.
Based on the linear vibration theory without considering the VKGN, the linear natural

frequencies of the FE beam, which were independent of the modal variables, could be
obtained by letting the geometrical stiffness coefficients be zero (i.e., g(e)ij = 0). Then,
the corresponding eigenvectors were scaled up by allowing the maximum transverse
displacement of the FG beam to be identical to a given vibration amplitude wmax, and g(e)ij
could be determined using these scaled-up eigenvectors. The nonlinear natural frequencies
of the FG beam, which were dependent upon the modal variables, could thus be obtained
using the updated eigenvalue system equations (Equation (19)). The iteration process
ended when the relative error between the nonlinear frequencies of mth and (m − 1)th

iterations were less than 10−5.
Using Equation (19) and the above-mentioned iterative process, the authors could

investigate the large amplitude free vibration characteristics of moderately thick FG beams
under different boundary conditions.

3. The MP BPNN
3.1. Feeding Forward Process

An MP BPNN was developed and briefly described in this section. For illustrative
purposes, a schematic for the structure of the Nh- layer network is shown in Figure 1, in
which Nh = 2; pj (j = 1, . . . , R) denotes the R inputs; wm

ij is the weight representing the

connection to the ith-neuron of the mth-layer from the jth-neuron of the (m − 1)th-layer, such
that m = 1, . . . , Nh, i = 1, . . . , Sm and j = 1, . . . , S(m − 1), as well as Sm, which is the total
number of neurons used in the mth-layer; bm

j is the bias of the jth-neuro of the mth-layer;

nm
i denotes the net input of the ith-neuron of the mth-layer; nm

i =
S(m−1)

∑
j=1

wm
ij a(m−1)

j + bm
j ;

am
i (i = 1, . . . , Sm) is the ith-output of the mth-layer, and am

i = f m(nm
i
)
, where f m is the

transfer function used in the mth-layer, and a0
j = pj. A symbol of R-S1-S2 in this work was

thus used to represent a two-layer network algorithm with R inputs, S1 and S2 neurons in
the first and second layers, and S2 outputs, in which the number of neurons used for the
last layer was the same as the number of final outputs.
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S
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1RW
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1a

1
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1
1
S
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Figure 1. Schematic of the structure of a two-layer network.

For a multilayer network, the output of one layer became the input to the following
layer, the operation of which as thus given as:

am+1 = fm+1
(

nm+1
)
= fm+1

(
Wm+1am + bm+1

)
for m = Nh, . . . , 1, 0, (20)

where bm+1 =
{

bm+1
1 bm+1

2 · · · bm+1
Sm+1

}T
; nm+1 =

{
nm+1

1 nm+1
2 · · · nm+1

Sm+1

}T
. In

this work, the transfer function for the hidden layers of m = 1, . . . , (Nh − 1) was se-
lected as the log-sigmoid function, while the last output layer of m = Nh was selected

as the linear transfer function, such that fm+1 =
{

f m+1
1 f m+1

2 · · · f m+1
Sm+1

}T
, in which

f m+1
i = 1/

(
1 + e−nm+1

i

)
and f Nh

i = nNh
i .

In the first hidden layer, the neurons received external inputs as follows:

a0 = p, (21)

where p =
{

p1 p2 · · · pR
}

, which provided the starting point for Equation (21).
The outputs of the neurons in the last layer were considered as the network outputs

and defined as:
a = aNh . (22)

3.2. Backpropagation Process

In order to operate the algorithm, there were appropriate input data sets and their
corresponding target output sets, which were provided and given as:

(p1, t1), (p2, t2), . . .
(

pq, tq

)
, . . . ,

(
pQ, tQ

)
. (23)
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The learning rule used in this ANN algorithm is called the least mean square algorithm,
which means that the network parameters could be adjusted to minimize the mean square
error as follows:

Min F̂(x) =
Q
∑

q=1

(
tq − aq

)T(tq − aq
)

=
Q
∑

q=1

(
eq
)Teq =

Q
∑

q=1

SNh

∑
j=1

(
ejq
)2

=
ne
∑

i=1
(vi)

2,

(24)

where x =
{

w1
11, · · · , w1

S1 R, b1
1, · · · , b1

S1 , · · · , wNh
11 , · · · , wNh

SNh SNh−1 , bNh
1 , · · · , bNh

SNh

}
,

in which the total number (np) for the parameters, including all the weights and bi-
ases in this MP BPNN algorithm, is np = (R + 1)S1 +

(
S1 + 1

)
S2 + · · ·

(
SNh−1 + 1

)
SNh .

vT = {v1 v2 · · · vne } =
{

e11 e21 · · · eSNh 1 e12 e22 · · · eSNh 2 · · · eSNh Q

}
, in which the

total number (ne) of the square error terms is ne = Q SNh .
In order to speed up the convergence rate, the Levenberg–Marquardt algorithm [26]

was adopted for network training.
When the input Pq was fed into the network and the corresponding network output

aNh
q was computed, the Levenberg–Marquardt BP algorithm could be initialized with:

~
S

Nh
=
[

~
S

Nh

1
~
S

Nh

2 · · ·
~
S

Nh

Q

]
(25)

where
~
S

Nh

q = −
.
F

Nh
(

nNh
q

)
, and the dimension of

.
F

m
(nm) is

SmxSm and that of
~
S

m
is Sm × (Q Sm) for m = 1, . . . , Nh.

The total Marquardt sensitivity matrices
~
S

m
could then be obtained in the following

order: m = Nh − 1, Nh − 2, . . . , 1, using the BP network, and this could be written as
follows:

~
S

m
=
[~
S

m

1
~
S

m

2 · · ·
~
S

m

Q

]
for m = Nh − 1, Nh − 2, . . . , 1, (26)

where
~
S

m

q =
.
F

m(
nm

q

) (
Wm+1

)T ~
S

m+1

q for q = 1, . . . , Q.
According to the Levenberg–Marquardt BP algorithm, all of the parameters could be

modified using an iteration process as follows:

X(k+1) = X(k) −
[
JT
(

x(k)
)

J
(

x(k)
)
+ µ(k) I

]−1
JT
(

x(k)
)

v
(

x(k)
)

, (27)

where k denotes the number of iterations, and the initial value of µ, i.e., µ(0), was taken to
be a significant value (e.g., µ(0) = 10,000). If a step yielded a more significant value for F(x),
then the step was repeated with µ(k) multiplied by a factor ϑ > 1 (e.g., ϑ = 2 in this work),
and if a step yielded a smaller value for F(x), then the step was repeated with µ(k) divided
by a factor ϑ > 1 (e.g., ϑ = 3 in this work). Eventually, the iteration process converged. In
this work, the stop criteria of the iteration process were considered as follows:

(1) When the root of the mean square relative error Re was less than 10−5, i.e.,

Re =

√√√√ Q

∑
q=1

[(
tq − aq

)T(tq − aq
)
/
(

tT
q tq

)]
/(Q SNh) ≤ 10−5 (28)

(2) When the number of iterations was greater than 20,000.
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4. Illustrative Examples
4.1. Large Amplitude-Free Vibration Analysis Using the Mixed FE Method

In this section, the authors investigate the large amplitude-free vibration behavior of
homogeneous isotropic and FG isotropic beams with combinations of simply supported,
free, and clamped boundary conditions using the mixed FE method.

Table 1 shows the results of the convergence study for the mixed FE solutions of the
nonlinear-to-linear natural frequency ratios (ωnl/ωlinear) of homogeneous isotropic beams
under S-S boundary conditions. This issue has also been studied using various FE methods,
such as the Lagrange-type FE method [43] and the Galerkin FE method [44]. The accuracy
and convergence rate of the RMVT-based FE methods with different orders used to expand
the primary variables in the element domain could thus be validated by comparing their
solutions with those available in the literature.

Table 1. Results of the convergence study for the mixed FE solutions of the nonlinear-to-linear natural
frequency ratios of isotropic beams under S-S boundary conditions.

Theories
wmax/

√
I/A

1.0 2.0 3.0 4.0

Current four linear elements 1.1196 1.4193 1.8117 2.2488
Current eight linear elements 1.1187 1.4164 1.8065 2.2412

Current 16 linear elements 1.1187 1.4163 1.8062 2.2407
Current four quadratic elements 1.1173 1.4124 1.8006 2.2342
Current eight quadratic elements 1.1183 1.4155 1.8053 2.2398

Current 16 quadratic elements 1.1186 1.4161 1.8061 2.2406
Current four cubic elements 1.1187 1.4164 1.8064 2.2410
Current eight cubic elements 1.1187 1.4162 1.8062 2.2407

Sarma and Varadan [43] 1.1180 1.4142 1.8028 2.2361
Bhashyam and Prathap [44] 1.1180 1.4141 1.8027 2.2359

The geometric parameters of the beams were L/h = 20 and h = 0.1 m. The material
properties were E = 322.3 GPa, and υ = 0.24. A maximum dimensionless amplitude was
defined as obtaining the nonlinear natural frequencies of the beams.

It can be seen in Table 1 that the RMVT-based (or mixed) FE solutions converged
rapidly and that convergent solutions were obtained when the 16 linear, eight quadratic
or four cubic elements were used. Moreover, the convergent solutions were in excellent
agreement with those obtained using various PVD-based FE methods [43,44].

Table 2 compares the mixed FE solutions for the natural frequency ratios of FG beams
under C-C boundary conditions with the solutions reported in the literature, in which
16 cubic elements were used. In addition, mixed FE solutions for the S-S, C-S, and C-F
boundary conditions were also presented. The FG beam was made of a ceramic-metal
two-phase material, comprised Silicon nitride Si3N4 (ceramic) and a stainless steel SuS304
(metal), and the material properties of the Si3N4 and SuS304 materials were Ec = 322.3 GPa,
υc = 0.24, and ρc = 2370 Kg/m3, as well as Em = 207.8 GPa, υm = 0.3178 , and
ρm = 8166 Kg/m3, in which the subscripts c and m denoted the ceramic and metal
materials, respectively. The material properties of the FG beam were assumed to obey the
power-law distributions through the thickness direction according to the volume fractions
of the constituents, which were Γc(z) = [1/2 + (z/h)]κp and Γm(z) = 1− Γc(z), in which
κp represents the material-property gradient index, and the effective material properties of
this were estimated using the rule of mixture, as follows:

P(z) = PcΓc(z) + PmΓm(z) (29)

where P represents E, υ, and ρ.
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Table 2. Comparisons between the mixed FE solutions of the nonlinear-to-linear natural frequency
ratios (ωnl/ωlinear) of FG beams under C-C boundary conditions and the solutions reported in the
literature, in which the mixed FE solutions for the S-S, C-S, and C-F boundary conditions are also
presented.

Boundary
Conditions

κp Theories
Wmax = Wmax/

√
I/A

1 2 3 4

C-C 0.3 Mixed FE method 1.0305 1.1164 1.2445 1.4017
Elmaguiri et al. [45] 1.0227 1.0875 1.1869 1.3121

Ke et al. [46] 1.0220 1.0852 1.1831 1.3079
1 Mixed FE method 1.0304 1.1158 1.2434 1.4000

Elmaguiri et al. [45] 1.0225 1.0871 1.1860 1.3106
Ke et al. [46] 1.0025 1.0873 1.1874 1.3149

2 Mixed FE method 1.0296 1.1128 1.2374 1.3906
Elmaguiri et al. [45] 1.0215 1.0832 1.1780 1.2980

Ke et al. [46] 1.0232 1.0900 1.1929 1.3237

S-S 0.3 Mixed FE method 1.1492 1.4666 1.8681 2.3102
1 Mixed FE method 1.1704 1.4964 1.8993 2.3397
2 Mixed FE method 1.1695 1.4899 1.8855 2.3182

C-S 0.3 Mixed FE method 1.0696 1.2379 1.4667 1.7299
1 Mixed FE method 1.0764 1.2481 1.4779 1.7409
2 Mixed FE method 1.0755 1.2438 1.4691 1.7272

C-F 0.3 Mixed FE method 1.00004 0.99998 0.99979 0.99948
1 Mixed FE method 1.00008 1.00004 0.99989 0.99961
2 Mixed FE method 1.00006 1.00002 0.99985 0.99956

It can be seen in Table 2 that the nonlinear-to-linear natural frequency ratios increased
when the maximum dimensionless amplitude became greater for C-C, C-S, and S-S bound-
ary conditions. Again, it can be seen in Table 2 that for the C-C boundary conditions, the
mixed FE solutions closely agreed with the solutions obtained by Elmaguiri et al. [45] and
Ke et al. [46] with Euler-Bernoulli’s beam theory accounting for the VKGN effect. These
results also show that the magnitudes of the nonlinear-to-linear natural frequency ratio
at increments for different boundary conditions were arranged in descending order: S-S
boundary conditions > C-S boundary conditions> C-C boundary conditions.

On the other hand, for C-F boundary conditions, the nonlinear-to-linear natural
frequency ratios slightly decreased when the maximum dimensionless amplitude became
greater. This was because the geometrical nonlinearity effect and the boundary constraints
resulted in an axial tensional force for the S-S, C-S, and C-C boundary conditions, enhancing
the overall stiffness of the FG beams. In contrast, this resulted in a very small compressive
force for the C-F boundary conditions, which slightly weakened the overall stiffness of the
FG beams. The results also showed that the influence of the geometrical nonlinearity effect
on the natural frequencies of the FG beams for different boundary conditions was arranged
in descending order: S-S > C-S > C-C > C-F boundary conditions.

The modal shapes of the FG beam under different boundary conditions are shown
in Figure 2, in which the maximum dimensionless amplitude and the material-property
gradient index were taken to be wmax = wmax/

√
I/A = 1 and κp = 0.3, respectively.
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4.2. Large Amplitude–Free Vibration Analysis Using the Developed MP BPNN

In this section, the large amplitude free vibration analysis of the FG rectangular beams
mentioned above was undertaken again using the developed MP BPNN algorithm, which
was trained using the mixed FE solutions. The boundary conditions of the FG beams
were considered to be clamped-clamped edge conditions. The cross-section of the FG
beam was 10 cm × 10 cm, and their material properties were considered the same as
those used in Table 2. The dimensionless nonlinear frequency parameter was defined as
ωnl = ωnl

√
ρm L2/Em.

After training, a set of optimal parameters, including the weight numbers wm
ij and

biases bm
j , where i = 1, . . . , Sm, j = 1, . . . , S(m − 1), and m = 1, . . . , Nh, could be obtained,

and the trained MP BPNN could replace the mixed FE method to predict the nonlinear
natural frequencies of the FG beams significantly faster compared to the case with the
mixed FE method. In the training of this MP BPNN, R was taken as three and repre-
sented the length-to-thickness ratio (L/h), the material-property gradient index (κp), and
the maximum dimensionless amplitude (wmax/

(√
I/A

)
), in which L/h = 101+0.05i, i =

0, . . . , 20; κp = 10−2+0.2i, i = 0, . . . , 20; wmax/
(√

I/A
)

= 1 + i, i = 0, . . . , 3, such that
the total number of the training data sets was 21 × 21 × 4 = 1764. The number of out-
puts was taken as two, which were the first and second lowest natural frequencies of
the FG beams. Thus, there were 1764 training data sets for the first lowest and second
lowest nonlinear natural frequencies of the FG beams, which were obtained using the
mixed FE methods and used to train the np parameters for each MP BPNN, in which
np = (R + 1)S1 +

(
S1 + 1

)
S2 + · · ·

(
SNh−1 + 1

)
SNh , the initial values of which were ran-

domly generated between −1 and 1. There were 100 sets of the initial values of the np
parameters used for each MP BPNN algorithm in this analysis, for which the first three best
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results are shown in Table 3 and were estimated using the Re of the outputs compared to
the other 200 selected testing data.

Table 3. General information regarding the developed MP BPNNs and their performance.

No. Neurons
of Each Hidden

Layer

No. Hidden Layers (i.e., (Nh − 1))

1 2 3 4

No.
Parameters

Training
Time (s)

Re of
Outputs

No. Pa-
rameters

Training
Time (s)

Re of
Outputs

No.
Pa-

rame-
ters

Training
Time

(s)

Re of
Outputs

No.
Parame-

ters

Training
Time

(s)

Re of
Outputs

2 14 40.99 0.2328% 20 116.50 0.1913% 26 83.46 0.0341% 32 314.25 0.0296%
31.98 0.2331% 170.48 0.1917% 52.81 0.1315% 525.97 0.0569%
32.50 0.2331% 103.02 0.2206% 56.06 0.1426% 107.98 0.0572%

4 26 45.13 0.1393% 46 70.94 0.0048% 66 435.87 0.0008%
25.45 0.1421% 38.68 0.0167% 188.26 0.0043%
35.50 0.2676% 124.84 0.0168% 78.46 0.0128%

6 38 163.32 0.0237% 80 173.84 0.0006%
55.70 0.0338% 252.95 0.0007%
55.11 0.0467% 533.02 0.0008%

8 50 82.67 0.0228%
86.69 0.0266%
122.42 0.0359%

In this section, the large amplitude free vibration analysis of FG rectangular beams
mentioned above was undertaken again using the developed MP BPNN algorithm, which
was trained using the mixed FE solutions. The FG beams’ boundary conditions were
considered clamped-clamped edge conditions. The cross-section of the FG beam was 10 cm
× 10 cm, and their material properties were considered the same as those used in Table 2.
The dimensionless nonlinear frequency parameter was defined as ωnl = ωnl

√
ρm L2/Em.

After training, a set of optimal parameters, including the weight numbers wm
ij and

biases bm
j , where i = 1, . . . , Sm, j = 1, . . . , S(m − 1), and m = 1, . . . , Nh, could be obtained,

and the trained MP BPNN replaced the mixed FE method to predict the nonlinear natural
frequencies of the FG beams significantly faster compared to the case with the mixed
FE method. In the training of this MP BPNN, R was taken as three, and represented
the length-to-thickness ratio (L/h), the material-property gradient index (κp), and the
maximum dimensionless amplitude (wmax/

(√
I/A

)
), in which L/h = 101+0.05i, i = 0, . . . , 20;

κp = 10−2+0.2i, i = 0, . . . , 20; wmax/
(√

I/A
)

= 1 + i, i = 0, . . . , 3, such that the total number
of the training data sets was 21 × 21 × 4 = 1764. The number of outputs was taken as
two, which were the first and second lowest natural frequencies of the FG beams. Thus,
there were 1764 training data sets for the first lowest and second lowest nonlinear natural
frequencies of the FG beams obtained using the mixed FE methods, and these were used
to train the np parameters for each MP BPNN, in which np = (R + 1)S1 +

(
S1 + 1

)
S2 +

· · ·
(
SNh−1 + 1

)
SNh , the initial values of which were randomly generated between −1 and

1. There were 100 sets of the initial values of the np parameters used for each MP BPNN
algorithm in this analysis, for which the first three best results are shown in Table 3; these
were estimated using the Re of outputs as compared with another 200 selected testing data.

It can be seen in Table 3 that the 3-6-6-2 and 3-4-4-4-2 BPNN algorithms yielded optimal
results, for which the values of Re were 0.0006% and 0.0008%, respectively. The 3-6-6-2
BPNN algorithm was thus used to predict the first lowest and second lowest nonlinear
natural frequencies of the FG beams, as shown in Figures 3 and 4. Furthermore, it can
be seen in each curve of Figures 3 and 4 that the solutions obtained using the mixed FE
method, drawn using the solid lines and the developed MP BPNN algorithm, and drawn
using the discrete symbols closely agreed with each other for a randomly selected group of
50 sets of input data.
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Table 4 compares the computer execution time required for the developed MP BPNN
and the mixed FE method when randomly selecting 50 input data sets, as shown in Figures 3
and 4. It was shown that the central processing unit (CPU) time required for the mixed
FE method was about 2800 times greater than that needed for the developed MP BPNN
algorithm. Thus, the trained MP BPNN algorithm was superior to the mixed FE method
because it was less time-consuming.

The results also showed that the nonlinear frequency parameters decreased when
the length-to-thickness ratio increased. The nonlinear frequency parameters depended on
the maximum dimensionless amplitude, and these values increased when the maximum
dimensionless amplitude was greater.
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Table 4. A comparison of the CPU time required for the proposed MP BPNN and the mixed FEM
when randomly selecting a group of 50 input data sets is shown in Figures 2 and 3.

[
κp, wmax/

√
I/A

] Time (s)

ANN FEM

[4, 1] 0.0027 7.1167

[4, 4] 0.0025 7.5926

[0.1, 2] 0.0026 7.4780

[1, 2] 0.0026 7.0521

CPU: Central processing unit.

5. Conclusions

In this article, based on the RMVT and TBT, a mixed FE method was developed
for the nonlinear free vibration analysis of FG beams under the combinations of simply
supported, free, and clamped edge conditions. Implementing the mixed FE method shows
that its convergent solutions were obtained when 16 linear, eight quadratic, or four cubic
elements were used and that these convergent solutions were in excellent agreement
with the accuracy solutions reported in the literature. These results also indicated that
the nonlinear natural frequency-to-linear natural frequency ratios increased when the
maximum dimensionless amplitude increased. On the other hand, for C-F boundary
conditions, the nonlinear-to-linear natural frequency ratios decreased when the maximum
dimensionless amplitude became greater. The influence of the geometrical nonlinearity
effect on the natural frequencies of the FG beams for different boundary conditions was
arranged in descending order: S-S > C-S > C-C > C-F boundary conditions.

An MP BPNN algorithm was also developed, in which the Levenberg–Marquardt
algorithm was used to speed up MP BPNN’s convergence rate. After training using the
mixed FE solutions, it was shown that the trained MP BPNN algorithm was superior to the
mixed FE method because it was approximately 1/2800 times less time-consuming. It is
worth mentioning that the above comparison did not account for the cost of generating FEM
data and training the BPNN. It is expected that the developed MP BPNN algorithm could
be extended to research subjects, including inverse problems, optimal design, structural
control, etc., when the traditional analytical or numerical methods used in such studies are
very time-consuming. Therefore, applying the MP BPNN to the research mentioned above
is ongoing.
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