Al2O3-Phosphate Bioceramic Fabrication via Spark Plasma Sintering-Reactive Synthesis: In Vivo and Microbiological Investigation
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents
2.2. Bioceramics Fabrication
2.3. Characterization Methods
2.4. In Vivo Biocompatibility Tests
2.5. Antibacterial Tests
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shekhawat, D.; Singh, A.; Banerjee, M.K.; Singh, T.; Patnaik, A. Bioceramic Composites for Orthopaedic Applications: A Comprehensive Review of Mechanical, Biological, and Microstructural Properties. Ceram. Int. 2021, 47, 3013–3030. [Google Scholar] [CrossRef]
- Sprio, S.; Tampieri, A.; Dapporto, M.; Iafisco, M.; Montesi, M. Bioceramics in Regenerative Medicine. Encycl. Mater. Tech. Ceram. Glas. 2021, 601–613. [Google Scholar] [CrossRef]
- Song, C.; Liu, L.; Deng, Z.; Lei, H.; Yuan, F.; Yang, Y.; Li, Y.; Yu, J. Research Progress on the Design and Performance of Porous Titanium Alloy Bone Implants. J. Mater. Res. Technol. 2023, 23, 2626–2641. [Google Scholar] [CrossRef]
- Davaie, S.; Hooshmand, T.; Ansarifard, S. Different Types of Bioceramics as Dental Pulp Capping Materials: A Systematic Review. Ceram. Int. 2021, 47, 20781–20792. [Google Scholar] [CrossRef]
- Vargas-Moreno, V.F.; de Ribeiro, M.C.O.; Gomes, R.S.; Faot, F.; Del Bel Cury, A.A.; Marcello-Machado, R.M. Clinical Performance of Short and Extrashort Dental Implants with Wide Diameter: A Systematic Review with Meta-Analysis. J. Prosthet. Dent. 2023. [Google Scholar] [CrossRef]
- Juhasz, J.A.; Best, S.M. Bioactive Ceramics: Processing, Structures and Properties. J. Mater. Sci. 2012, 47, 610–624. [Google Scholar] [CrossRef]
- Zhang, C.; Zeng, C.; Wang, Z.; Zeng, T.; Wang, Y. Optimization of Stress Distribution of Bone-Implant Interface (BII). Biomater. Adv. 2023, 147, 213342. [Google Scholar] [CrossRef]
- Fini, M.; Giavaresi, G.; Torricelli, P.; Borsari, V.; Giardino, R.; Nicolini, A.; Carpi, A. Osteoporosis and Biomaterial Osteointegration. Biomed. Pharmacother. 2004, 58, 487–493. [Google Scholar] [CrossRef]
- Quan, R.; Tang, Y.; Huang, Z.; Xu, J.; Wei, X.; Yang, D. Effects of HA/ZrO2 Composite Powder on Mesenchymal Stem Cells Proliferation and Osteogenic Differentiation. Ceram. Int. 2012, 38, 6621–6628. [Google Scholar] [CrossRef]
- Rapacz-Kmita, A.; Ślósarczyk, A.; Paszkiewicz, Z. HAp-ZrO2 Composite Coatings Prepared by Plasma Spraying for Biomedical Applications. Ceram. Int. 2005, 31, 567–571. [Google Scholar] [CrossRef]
- Wang, L.N.; Luo, J.L. Enhancing the Bioactivity of Zirconium with the Coating of Anodized ZrO2 Nanotubular Arrays Prepared in Phosphate Containing Electrolyte. Electrochem. Commun. 2010, 12, 1559–1562. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Zhang, Z.; Dai, Q.X.; Lin, D.Y.; Li, S.M. Microstructure and Bond Strength of HA(+ZrO2+Y2O3)/Ti6Al4V Composite Coatings Fabricated by RF Magnetron Sputtering. Surf. Coatings Technol. 2006, 200, 5354–5363. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, H.; Yao, H.; Zeng, Y.; Chen, J. Preparation, Microstructure, and Properties of ZrO2(3Y)/Al2O3 Bioceramics for 3D Printing of All-Ceramic Dental Implants by Vat Photopolymerization. Chinese J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100023. [Google Scholar] [CrossRef]
- Nandha Kumar, P.; Ferreira, J.M.F.; Kannan, S. Phase Transition Mechanisms Involved in the Formation of Structurally Stable β-Ca3(PO4)2-α-Al2O3 Composites. J. Eur. Ceram. Soc. 2017, 37, 2953–2963. [Google Scholar]
- Bezzina, S.; Khoshaim, A.B. Effects of the Sintering Process on the Different Properties of Alumina/Hydroxyapatite Nanobiocomposites. Appl. Phys. A 2021, 127, 428. [Google Scholar] [CrossRef]
- Djouallah, S.; Belhouchet, H.; Kenzour, A.; Kherifi, D. Sintering Behavior of Fluorapatite-Based Composites Produced from Natural Phosphate and Alumina. Ceram. Int. 2021, 47, 3553–3564. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Apanasevich, V.I.; Afonin, I.S.; Evdokimov, I.O.; Mayorov, V.Y.; Portnyagin, A.S.; Agafonova, I.G.; Skurikhina, Y.E.; Medkov, M.A. Synthetic CaSiO3 Sol-Gel Powder and SPS Ceramic Derivatives: “In Vivo” Toxicity Assessment. Prog. Nat. Sci. Mater. Int. 2019, 29, 569–575. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Buravlev, I.Y.; Portnyagin, A.S.; Belov, A.A.; Maiorov, V.Y.; Skurikhina, Y.E.; Merkulov, E.B.; Glavinskaya, V.O.; Nomerovskii, A.D.; et al. Reactive Spark Plasma Synthesis of Porous Bioceramic Wollastonite. Russ. J. Inorg. Chem. 2020, 65, 263–270. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Apanasevich, V.I.; Portnyagin, A.S.; Yu, M.V.; Yu, B.I.; Merkulov, E.B.; Kaidalova, T.A.; Modin, E.B.; Afonin, I.S.; et al. Sol-Gel (Template) Synthesis of Osteoplastic CaSiO3/HAp Powder Biocomposite: “In Vitro” and “in Vivo” Biocompatibility Assessment. Powder Technol. 2020, 367, 762–773. [Google Scholar] [CrossRef]
- Mei, L.; Yin, J.; Xia, Y.; Yao, D.; Liang, H.; Zuo, K.; Zeng, Y.-P. Preparation of High-Strength β-CaSiO3 Bioceramic with B2O3 and SiO2 Sintering Additives. Ceram. Int. 2020, 46, 25970–25978. [Google Scholar] [CrossRef]
- Papynov, E.K.; Mayorov, V.Y.; Portnyagin, A.S.; Shichalin, O.O.; Kobylyakovt, S.P.; Kaidalova, T.A.; Nepomnyashiy, A.V.; Sokol’nitskaya, T.A.; Zub, Y.L.; Avramenko, V.A. Application of Carbonaceous Template for Porous Structure Control of Ceramic Composites Based on Synthetic Wollastonite Obtained via Spark Plasma Sintering. Ceram. Int. 2015, 41, 1171–1176. [Google Scholar] [CrossRef]
- Zhang, N.; Molenda, J.A.; Fournelle, J.H.; Murphy, W.L.; Sahai, N. Effects of Pseudowollastonite (CaSiO3) Bioceramic on in Vitro Activity of Human Mesenchymal Stem Cells. Biomaterials 2010, 31, 7653–7665. [Google Scholar] [CrossRef]
- Stevens, M.M. Biomaterials for Bone Tissue Engineering. Mater. Today 2008, 11, 18–25. [Google Scholar] [CrossRef]
- Zhou, G.S.; Su, Z.Y.; Cai, Y.R.; Liu, Y.K.; Dai, L.C.; Tang, R.K.; Zhang, M. Different Effects of Nanophase and Conventional Hydroxyapatite Thin Films on Attachment, Proliferation and Osteogenic Differentiation of Bone Marrow Derived Mesenchymal Stem Cells. Biomed. Mater. Eng. 2007, 17, 387–395. [Google Scholar] [PubMed]
- Cai, Y.; Liu, Y.; Yan, W.; Hu, Q.; Tao, J.; Zhang, M.; Shi, Z.; Tang, R. Role of Hydroxyapatite Nanoparticle Size in Bone Cell Proliferation. J. Mater. Chem. 2007, 17, 3780. [Google Scholar] [CrossRef]
- Kumar, R.; Mohanty, S. Hydroxyapatite: A Versatile Bioceramic for Tissue Engineering Application. J. Inorg. Organomet. Polym. Mater. 2022, 32, 4461–4477. [Google Scholar] [CrossRef]
- Rapacz-Kmita, A.; Ślósarczyk, A.; Paszkiewicz, Z. Mechanical Properties of HAp-ZrO2 Composites. J. Eur. Ceram. Soc. 2006, 26, 1481–1488. [Google Scholar] [CrossRef]
- Silva, V.V.; Lameiras, F.S.; Domingues, R.Z. Microstructural and Mechanical Study of Zirconia-Hydroxyapatite (ZH) Composite Ceramics for Biomedical Applications. Compos. Sci. Technol. 2001, 61, 301–310. [Google Scholar] [CrossRef]
- Engstrand, T.; Kihlström, L.; Neovius, E.; Skogh, A.C.D.; Lundgren, T.K.; Jacobsson, H.; Bohlin, J.; Åberg, J.; Engqvist, H. Development of a Bioactive Implant for Repair and Potential Healing of Cranial Defects: Technical Note. J. Neurosurg. 2014, 120, 273–277. [Google Scholar] [CrossRef]
- Vignesh Raj, S.; Rajkumar, M.; Meenakshi Sundaram, N.; Kandaswamy, A. Synthesis and Characterization of Hydroxyapatite/Alumina Ceramic Nanocomposites for Biomedical Applications. Bull. Mater. Sci. 2018, 41, 93. [Google Scholar] [CrossRef]
- Yelten, A.; Karal-Yilmaz, O.; Akguner, Z.P.; Bal-Ozturk, A.; Yilmaz, S. In-Vitro Bioactivity Investigation of Sol-Gel Derived Alumina-Bovine Hydroxyapatite (Bha) Composite Powders. Gazi Univ. J. Sci. 2020, 33, 690–700. [Google Scholar] [CrossRef]
- Melnikova, I.P.; Nikolaev, A.L.; Lyasnikova, A.V. Improving the Osseointegration Properties of Biocompatible Plasma-Sprayed Coatings Based on Hydroxyapatite and Al2O3. In Physics and Mechanics of New Materials and Their Applications; Springer International Publishing: Cham, Switzerland, 2021; pp. 79–89. [Google Scholar]
- Nair Silva-Holguín, P.; de Jesús Ruíz-Baltazar, Á.; Yobanny Reyes-López, S. Antimicrobial Study of the Al2O3-Cu and Al2O3-Hydroxiapatite-Cu Spheres. Inorg. Chem. Commun. 2022, 138. [Google Scholar] [CrossRef]
- Silva-Holguín, P.N.; Reyes-López, S.Y. Synthesis of Hydroxyapatite-Ag Composite as Antimicrobial Agent. Dose-Response 2020, 18, 155932582095134. [Google Scholar] [CrossRef] [PubMed]
- Papynov, E.K.; Shichalin, O.O.; Skurikhina, Y.E.; Turkutyukov, V.B.; Medkov, M.A.; Grishchenko, D.N.; Portnyagin, A.S.; Merkulov, E.B.; Apanasevich, V.I.; Geltser, B.I.; et al. ZrO2-Phosphates Porous Ceramic Obtained via SPS-RS “in Situ” Technique: Bacteria Test Assessment. Ceram. Int. 2019, 45, 13838–13846. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Medkov, M.A.; Grishchenko, D.N.; Tkachenko, I.A.; Fedorets, A.N.; Pechnikov, V.S.; Golub, A.V.; Buravlev, I.Y.; Tananaev, I.G.; et al. Spark Plasma Sintering of Special-Purpose Functional Ceramics Based on UO2, ZrO2, Fe3O4/α-Fe2O3. Glas. Phys. Chem. 2018, 44, 632–640. [Google Scholar] [CrossRef]
- Nazirah, R.; Zuhailawati, H.; Siti Nur Hazwani, M.R.; Abdullah, T.K.; Azzura, I.; Dhindaw, B.K. The Influence of Hydroxyapatite and Alumina Particles on the Mechanical Properties and Corrosion Behavior of Mg-Zn Hybrid Composites for Implants. Materials 2021, 14, 6246. [Google Scholar] [CrossRef]
- Li, J.; Fartash, B.; Hermansson, L. Hydroxyapatite—Alumina Composites and Bone-Bonding. Biomaterials 1995, 16, 417–422. [Google Scholar] [CrossRef]
- Başar, B.; Tezcaner, A.; Keskin, D.; Evis, Z. Synthesis, Phase Transitions and Cellular Biocompatibility of Nanophase Alumina–Hydroxyapatite Composites. Adv. Appl. Ceram. 2011, 110, 238–243. [Google Scholar] [CrossRef]
- Gunawan, G.; Arifin, A.; Yani, I.; Indrajaya, M. Characterization of Porous Hydroxyapatite-Alumina Composite Scaffold Produced via Powder Compaction Method. IOP Conf. Ser. Mater. Sci. Eng. 2019, 620, 012107. [Google Scholar] [CrossRef]
- Bartonickova, E.; Vojtisek, J.; Tkacz, J.; Porizka, J.; Masilko, J.; Moncekova, M.; Parizek, L. Porous HA/Alumina Composites Intended for Bone-Tissue Engineering. Mater. Tehnol. 2017, 51, 631–636. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Buravlev, I.Y.; Belov, A.B.; Portnyagin, A.S.; Mayorov, V.Y.; Merkulov, E.B.; Kaydalova, T.I.; Skurikhina, Y.E.; Turkutyukov, V.B.; et al. CaSiO 3-HAp Structural Bioceramic by Sol-Gel and SPS-RS Techniques: Bacteria Test Assessment. J. Funct. Bioceram. 2020, 11, 41. [Google Scholar] [CrossRef]
- Ergun, C. Enhanced Phase Stability in Hydroxylapatite/Zirconia Composites with Hot Isostatic Pressing. Ceram. Int. 2011, 37, 935–942. [Google Scholar] [CrossRef]
- Epure, L.M.; Dimitrievska, S.; Merhi, Y.; Yahia, L.H. The Effect of Varying Al2O3 Percentage in Hydroxyapatite/Al2O3 Composite Materials: Morphological, Chemical and Cytotoxic Evaluation. J. Biomed. Mater. Res. Part A 2007, 1009–1023. [Google Scholar] [CrossRef] [PubMed]
- Viswanath, B.; Ravishankar, N. Interfacial Reactions in Hydroxyapatite/Alumina Nanocomposites. Scr. Mater. 2006, 55, 863–866. [Google Scholar] [CrossRef]
- Horng Yih Juang; Min Hsiung Hon Fabrication and Mechanical Properties of Hydroxyapatite-Alumina Composites. Mater. Sci. Eng. C 1994, 2, 77–81. [CrossRef]
- Quillard, S.; Paris, M.; Deniard, P.; Gildenhaar, R.; Berger, G.; Obadia, L.; Bouler, J.M. Structural and Spectroscopic Characterization of a Series of Potassium- and/or Sodium-Substituted β-Tricalcium Phosphate. Acta Biomater. 2011, 7, 1844–1852. [Google Scholar] [CrossRef]
- Nandha Kumar, P.; Mishra, S.K.; Udhay Kiran, R.; Kannan, S. Preferential Occupancy of Strontium in the Hydroxyapatite Lattice in Biphasic Mixtures Formed from Non-Stoichiometric Calcium Apatites. Dalt. Trans. 2015, 44, 8284–8292. [Google Scholar] [CrossRef]
- Kumar, P.N.; Mishra, S.K.; Kannan, S. Probing the Limit of Magnesium Uptake by β-Tricalcium Phosphate in Biphasic Mixtures Formed from Calcium Deficient Apatites. J. Solid State Chem. 2015, 231, 13–19. [Google Scholar] [CrossRef]
- Matsumoto, N.; Sato, K.; Yoshida, K.; Hashimoto, K.; Toda, Y. Preparation and Characterization of β-Tricalcium Phosphate Co-Doped with Monovalent and Divalent Antibacterial Metal Ions. Acta Biomater. 2009, 5, 3157–3164. [Google Scholar] [CrossRef]
- Bessière, A.; Benhamou, R.A.; Wallez, G.; Lecointre, A.; Viana, B. Site Occupancy and Mechanisms of Thermally Stimulated Luminescence in Ca 9Ln(PO 4) 7 (Ln = Lanthanide). Acta Mater. 2012, 60, 6641–6649. [Google Scholar] [CrossRef]
- Papynov, E.K.; Portnyagin, A.S.; Modin, E.B.; Mayorov, V.Y.; Shichalin, O.O.; Golikov, A.P.; Pechnikov, V.S.; Gridasova, E.A.; Tananaev, I.G.; Avramenko, V.A. A Complex Approach to Assessing Porous Structure of Structured Ceramics Obtained by SPS Technique. Mater. Charact. 2018, 145, 294–302. [Google Scholar] [CrossRef]
- IGARASHI, K.; NAKAHARA, K.; HAGA-TSUJIMURA, M.; KOBAYASHI, E.; WATANABE, F. Hard and Soft Tissue Responses to Three Different Implant Materials in a Dog Model. Dent. Mater. J. 2015, 34, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign Body Reaction to Biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Callejas-Díaz, A.; Fernández-Pérez, C.; Ramos-Martínez, A.; Múñez-Rubio, E.; Sánchez-Romero, I.; Vargas Núñez, J.A. Impact of Pseudomonas Aeruginosa Bacteraemia in a Tertiary Hospital: Mortality and Prognostic Factors. Med. Clin. (Barc). 2018, 152, 83–89. [Google Scholar] [CrossRef]
- World Medical Association World Medical Association Declaration of Helsinki. Bull. world Heal. Organ. 2001, 79, 373–374.
- Ratuski, A.S.; Weary, D.M. Environmental Enrichment for Rats and Mice Housed in Laboratories: A Metareview. Animals 2022, 12, 414. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papynov, E.; Shichalin, O.; Apanasevich, V.; Plekhova, N.; Belov, A.; Buravlev, I.; Portnyagin, A.; Mayorov, V.; Skurikhina, Y.; Fedorets, A.; et al. Al2O3-Phosphate Bioceramic Fabrication via Spark Plasma Sintering-Reactive Synthesis: In Vivo and Microbiological Investigation. J. Compos. Sci. 2023, 7, 409. https://doi.org/10.3390/jcs7100409
Papynov E, Shichalin O, Apanasevich V, Plekhova N, Belov A, Buravlev I, Portnyagin A, Mayorov V, Skurikhina Y, Fedorets A, et al. Al2O3-Phosphate Bioceramic Fabrication via Spark Plasma Sintering-Reactive Synthesis: In Vivo and Microbiological Investigation. Journal of Composites Science. 2023; 7(10):409. https://doi.org/10.3390/jcs7100409
Chicago/Turabian StylePapynov, Evgeniy, Oleg Shichalin, Vladimir Apanasevich, Nataliya Plekhova, Anton Belov, Igor Buravlev, Arseny Portnyagin, Vitaliy Mayorov, Yuliya Skurikhina, Alexander Fedorets, and et al. 2023. "Al2O3-Phosphate Bioceramic Fabrication via Spark Plasma Sintering-Reactive Synthesis: In Vivo and Microbiological Investigation" Journal of Composites Science 7, no. 10: 409. https://doi.org/10.3390/jcs7100409
APA StylePapynov, E., Shichalin, O., Apanasevich, V., Plekhova, N., Belov, A., Buravlev, I., Portnyagin, A., Mayorov, V., Skurikhina, Y., Fedorets, A., Buravleva, A., Gridasova, E., & Shi, Y. (2023). Al2O3-Phosphate Bioceramic Fabrication via Spark Plasma Sintering-Reactive Synthesis: In Vivo and Microbiological Investigation. Journal of Composites Science, 7(10), 409. https://doi.org/10.3390/jcs7100409