# Impact Resistance of Fibre Reinforced Composite Railway Freight Tank Wagons

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Composite Freight Tank Wagons

- Increased profits due to larger deliveries, less constrained by freight train length and weight;
- A reduction in the total number of train movements required as more cargo is transported at a time, reducing operational costs, life cycle costs and energy consumption.

## 3. Impact Performance of Composites

## 4. Methodology

#### 4.1. Preparation of Test Specimens

#### 4.2. Preloading

#### 4.3. Impact Testing

## 5. Results

#### 5.1. Damage Modes

#### 5.2. Peak Force

#### 5.3. Absorbed Energy

#### 5.4. Penetration Depth

## 6. Discussion

## 7. Conclusions

- The layup for a composite vessel should be chosen so that the fibres lie parallel to the principal loading directions. This reduces the effect of preloading on the impact performance of the final structure. If $0\xb0$ plies are required, alternatives to filament winding may need to be explored.
- The effect of preloading is only apparent when a composite laminate undergoes high-intensity impacts, initiating fibre rupture and internal delaminations. Therefore, the consideration of preload is only required if the structure will be subjected to large, sustained impact events (such as ballast impact for a freight wagon).
- The addition of preload only appears to be detrimental to matrix cracking and fibre rupture, two failures that are highly driven by initial energy absorption. Therefore, impact-resistant layers to protect the composite should be considered for composite structures that are subjected to a large degree of impact loading.

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Nomenclature

$R$ | Vessel external radius (m) |

$T$ | Vessel wall thickness (m) |

${F}_{v}$ | Vehicle loading (N) |

$P$ | Vessel internal pressure (Pa) |

${\sigma}_{v}$ | Vehicle stress (Pa) |

${\sigma}_{\theta}$ | Hoop stress (Pa) |

${\sigma}_{z}$ | Axial stress (Pa) |

${\sigma}_{r}$ | Radial stress (Pa) |

${F}_{z}$ | Specimen axial force (N) |

${F}_{\theta}$ | Specimen hoop force (N) |

${F}_{R}$ | Specimen resistive force (kN) |

${F}_{max}$ | Specimen peak resistive force (kN) |

${A}_{1}$ | Specimen axial area (m^{2}) |

${A}_{2}$ | Specimen hoop area (m^{2}) |

${F}_{b}$ | Bolt force (N) |

${D}_{b}$ | Bolt major diameter (m) |

$c$ | Bolt torque friction coefficient |

${M}_{b}$ | Applied bolt torque (Nm) |

${M}_{\theta}$ | Applied hoop bolt torque (Nm) |

${M}_{z}$ | Applied axial bolt torque (Nm) |

${E}_{i}$ | Impact energy (J) |

${E}_{a}$ | Absorbed energy (J) |

$m$ | Impactor mass (kg) |

$g$ | Acceleration due to gravity (ms^{−2}) |

$H$ | Drop height (m) |

$t$ | Time (s) |

$\delta $ | Penetration depth (mm) |

## Appendix A

Loading Condition | Impact Energy (J) | Peak Force (kN) | Mean Absorbed Energy (J) | Mean Penetration Depth (mm) | |||
---|---|---|---|---|---|---|---|

Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | ||

Unloaded | 7.85 | 3.59 | 0.052 | 2.40 | 0.178 | 0.40 | 0.072 |

11.78 | 3.88 | 0.057 | 5.39 | 0.392 | 1.01 | 0.204 | |

13.75 | 4.08 | 0.068 | 8.72 | 0.634 | 1.67 | 0.084 | |

15.71 | 3.82 | 0.092 | 14.23 | 0.972 | 2.01 | 0.149 | |

Uniaxial loading | 7.85 | 3.63 | 0.159 | 2.53 | 0.100 | 0.44 | 0.083 |

11.78 | 4.03 | 0.104 | 6.81 | 0.365 | 1.65 | 0.291 | |

13.75 | 4.09 | 0.044 | 10.70 | 1.325 | 2.06 | 0.136 | |

15.71 | 3.56 | 0.378 | 17.27 | 0.000 | 2.20 | 0.000 | |

Biaxial loading | 7.85 | 3.63 | 0.243 | 2.27 | 0.632 | 0.42 | 0.079 |

11.78 | 4.12 | 0.130 | 6.26 | 1.700 | 1.80 | 0.134 | |

13.75 | 4.31 | 0.168 | 10.34 | 0.744 | 1.99 | 0.166 | |

15.71 | 3.05 | 1.234 | 17.27 | 0.000 | 2.20 | 0.000 |

## References

- International Transport Forum. ITF Transport Outlook 2019; OECD Publishing: Paris, France, 2019. [Google Scholar]
- The Technical Stratergy Leadership Group (TSLG). The Future Railway: The Industy’s Rail Technical Stratergy; Rail Safety and Standards Board (RSSB): London, UK, 2012. [Google Scholar]
- Baskin, D.M. The Automotive Body Lightweighting Design Philosophy. In Lightweight Composite Structures in Transport: Design, Manufacturing, Analysis and Performance; Woodhead Publishing: Cambridge, UK, 2016; pp. 75–90. [Google Scholar]
- Abrate, S. Impact on Composite Structures; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Zheng, J.; Liu, X.; Xu, P.; Liu, P.; Zhao, Y.; Yang, J. Development of High Pressure Gaseous Hydrogen Storage Technologies. Int. J. Hydrog. Energy
**2012**, 37, 1048–1057. [Google Scholar] [CrossRef] - Marsh, G. Composites lift off in primary aerostructures. Reinf. Plast.
**2004**, 48, 22–27. [Google Scholar] [CrossRef] - Lowe, O. Freight Rail Usage and Performance 2019-20 Q4 Stastical Release; Office of Rail and Road (ORR): London, UK, 2020. [Google Scholar]
- Rochard, B.P.; Schmid, F. Benefits of Lower-Mass Trains for High Speed Rail Operations. Transport
**2004**, 157, 51–64. [Google Scholar] - Findik, F.; Turan, K. Materials selection for lighter wagon design with a weighted property index method. Mater. Des.
**2012**, 37, 470–477. [Google Scholar] [CrossRef] - Vargas-Silva, G.; Miravete, A. Influence of the Filament Winding Process Variables on the Mechanical Behavior of a Composite Pressure Vessel; WIT Press: Southampton, UK, 2004. [Google Scholar]
- Park, S.-J.; Seo, M.-K. Chapter 6—Element and Processing. In Interface Science and Technology; Park, S.-J., Seo, M.-K., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 18, pp. 431–499. [Google Scholar]
- Vaidya, U.K. Impact Response of Laminated and Sandwich Composites. In Impact Engineering of Composite Structures; Abrate, S., Ed.; Springer: Vienna, Austria, 2011; pp. 97–191. [Google Scholar]
- Naik, N.K.; Shrirao, P. Composite structures under ballistic impact. Compos. Struct.
**2004**, 66, 579–590. [Google Scholar] [CrossRef] - Kim, E.-H.; Rim, M.-S.; Lee, I.; Hwang, T.-K. Composite damage model based on continuum damage mechanics and low velocity impact analysis of composite plates. Compos. Struct.
**2013**, 95, 123–134. [Google Scholar] [CrossRef] - Sun, C.T. An Analytical Method for Evaluation of Impact Damage Energy of Laminated Composites; ASTM Special Technical Publication: West Conshohocken, PA, USA, 1977; pp. 427–440. [Google Scholar]
- Iannucci, L.; Willows, M.L. An energy based damage mechanics approach to modelling impact onto woven composite materials—Part I: Numerical models. Compos. Part A Appl. Sci. Manuf.
**2006**, 37, 2041–2056. [Google Scholar] [CrossRef] - Olsson, R. Analytical prediction of large mass impact damage in composite laminates. Compos. Part A Appl. Sci. Manuf.
**2001**, 32, 1207–1215. [Google Scholar] [CrossRef] - Abrate, S. Modeling of impacts on composite structures. Compos. Struct.
**2001**, 51, 129–138. [Google Scholar] [CrossRef] - Huang, K.Y.; Boer, A.d.; Akkerman, R. Analytical Modeling of Impact Resistance and Damage Tolerance of Laminated Composite Plates. AIAA J.
**2008**, 46, 2760–2772. [Google Scholar] [CrossRef] - Faggiani, A.; Falzon, B.G. Predicting low-velocity impact damage on a stiffened composite panel. Compos. Part A Appl. Sci. Manuf.
**2010**, 41, 737–749. [Google Scholar] [CrossRef] - Iannucci, L.; Ankersen, J. An energy based damage model for thin laminated composites. Compos. Sci. Technol.
**2006**, 66, 934–951. [Google Scholar] [CrossRef] - Lapczyk, I.; Hurtado, J.A. Progressive damage modeling in fiber-reinforced materials. Compos. Part A Appl. Sci. Manuf.
**2007**, 38, 2333–2341. [Google Scholar] [CrossRef] - Metoui, S.; Pruliere, E.; Ammar, A.; Dau, F. A reduced model to simulate the damage in composite laminates under low velocity impact. Comput. Struct.
**2018**, 199, 34–45. [Google Scholar] [CrossRef][Green Version] - Malik, M.H.; Arif, A.F.M.; Al-Sulaiman, F.A.; Khan, Z. Impact resistance of composite laminate flat plates—A parametric sensitivity analysis approach. Compos. Struct.
**2013**, 102, 138–147. [Google Scholar] [CrossRef] - Pavier, M.J.; Clarke, M.P. Experimental techniques for the investigation of the effects of impact damage on carbon-fibre composites. Compos. Sci. Technol.
**1995**, 55, 157–169. [Google Scholar] [CrossRef] - Aktaş, M.; Atas, C.; İçten, B.M.; Karakuzu, R. An experimental investigation of the impact response of composite laminates. Compos. Struct.
**2009**, 87, 307–313. [Google Scholar] [CrossRef] - Hosseinzadeh, R.; Shokrieh, M.M.; Lessard, L. Damage behavior of fiber reinforced composite plates subjected to drop weight impacts. Compos. Sci. Technol.
**2006**, 66, 61–68. [Google Scholar] [CrossRef] - Tita, V.; de Carvalho, J.; Vandepitte, D. Failure analysis of low velocity impact on thin composite laminates: Experimental and numerical approaches. Compos. Struct.
**2008**, 83, 413–428. [Google Scholar] [CrossRef] - Tuo, H.; Lu, Z.; Ma, X.; Zhang, C.; Chen, S. An experimental and numerical investigation on low-velocity impact damage and compression-after-impact behavior of composite laminates. Compos. Part B Eng.
**2019**, 167, 329–341. [Google Scholar] [CrossRef] - Chiu, S.-T.; Liou, Y.-Y.; Chang, Y.-C.; Ong, C.-l. Low velocity impact behavior of prestressed composite laminates. Mater. Chem. Phys.
**1997**, 47, 268–272. [Google Scholar] [CrossRef] - Sun, C.T.; Chen, J.K. On the Impact of Initially Stressed Composite Laminates. J. Compos. Mater.
**1985**, 19, 490–504. [Google Scholar] [CrossRef] - Schoeppner, G.A.; Abrate, S. Delamination threshold loads for low velocity impact on composite laminates. Compos. Part A Appl. Sci. Manuf.
**2000**, 31, 903–915. [Google Scholar] [CrossRef] - Pickett, A.K.; Fouinneteau, M.R.C.; Middendorf, P. Test and Modelling of Impact on Pre-Loaded Composite Panels. Appl. Compos. Mater.
**2009**, 16, 225–244. [Google Scholar] [CrossRef] - Kurşun, A.; Şenel, M. Investigation of the Effect of Low-Velocity Impact on Composite Plates with Preloading. Exp. Tech.
**2013**, 37, 41–48. [Google Scholar] [CrossRef] - Langella, T.; Rogani, A.; Navarro, P.; Ferrero, J.F.; Lopresto, V.; Langella, A. Experimental Study of the Influence of a Tensile Preload on Thin Woven Composite Laminates Under Impact Loading. J. Mater. Eng. Perform.
**2019**, 28, 3203–3210. [Google Scholar] [CrossRef] - Guillaud, N.; Froustey, C.; Dau, F.; Viot, P. Impact response of thick composite plates under uniaxial tensile preloading. Compos. Struct.
**2015**, 121, 172–181. [Google Scholar] [CrossRef][Green Version] - Nettles, A.T. The effects of tensile preloads on the impact response of carbon/epoxy laminates. ASTM Spec. Tech. Publ.
**1998**, 1330, 249–262. [Google Scholar] [CrossRef][Green Version] - Whittingham, B.; Marshall, I.H.; Mitrevski, T.; Jones, R. The response of composite structures with pre-stress subject to low velocity impact damage. Compos. Struct.
**2004**, 66, 685–698. [Google Scholar] [CrossRef] - Wu, Q.; Chen, X.; Fan, Z.; Jiang, Y.; Nie, D. Experimental and numerical studies of impact on filament-wound composite cylinder. Acta Mech. Solida Sin.
**2017**, 30. [Google Scholar] [CrossRef] - Ribeiro, M.L.; Vandepitte, D.; Tita, V. Experimental analysis of transverse impact loading on composite cylinders. Compos. Struct.
**2015**, 133, 547–563. [Google Scholar] [CrossRef] - Liao, B.B.; Jia, L.Y. Finite element analysis of dynamic responses of composite pressure vessels under low velocity impact by using a three-dimensional laminated media model. Thin-Walled Struct.
**2018**, 129, 488–501. [Google Scholar] [CrossRef] - Krishnamurthy, K.S.; Mahajan, P.; Mittal, R.K. A parametric study of the impact response and damage of laminated cylindrical composite shells. Compos. Sci. Technol.
**2001**, 61, 1655–1669. [Google Scholar] [CrossRef] - Ganapathy, S.; Rao, K.P. Failure analysis of laminated composite cylindrical/spherical shell panels subjected to low-velocity impact. Comput. Struct.
**1998**, 68, 627–641. [Google Scholar] [CrossRef] - Rafiee, R.; Rashedi, H.; Rezaee, S. Theoretical study of failure in composite pressure vessels subjected to low-velocity impact and internal pressure. Front. Struct. Civ. Eng.
**2020**, 14. [Google Scholar] [CrossRef] - Liao, B.; Du, Y.; Zheng, J.; Wang, D.; Lin, Y.; Tao, R.; Zhou, C. Prediction of residual burst strength for composite pressure vessels after low velocity impact. Int. J. Hydrog. Energy
**2020**, 45, 10962–10976. [Google Scholar] [CrossRef] - Kim, E.-H.; Lee, I.; Hwang, T.-K. Low-Velocity Impact and Residual Burst-Pressure Analysis of Cylindrical Composite Pressure Vessels. AIAA J.
**2012**, 50, 2180–2193. [Google Scholar] [CrossRef] - Demir, İ.; Sayman, O.; Dogan, A.; Arikan, V.; Arman, Y. The effects of repeated transverse impact load on the burst pressure of composite pressure vessel. Compos. Part B Eng.
**2015**, 68, 121–125. [Google Scholar] [CrossRef] - Blanc-Vannet, P. Burst pressure reduction of various thermoset composite pressure vessels after impact on the cylindrical part. Compos. Struct.
**2017**, 160, 706–711. [Google Scholar] [CrossRef] - Changliang, Z.; Mingfa, R.; Wei, Z.; Haoran, C. Delamination prediction of composite filament wound vessel with metal liner under low velocity impact. Compos. Struct.
**2006**, 75, 387–392. [Google Scholar] [CrossRef] - Choi, I.H. Low-velocity impact response analysis of composite pressure vessel considering stiffness change due to cylinder stress. Compos. Struct.
**2017**, 160, 491–502. [Google Scholar] [CrossRef] - Wang, H.; Hazell, P.J.; Shankar, K.; Morozov, E.V.; Escobedo, J.P. Impact behaviour of Dyneema
^{®}fabric-reinforced composites with different resin matrices. Polym. Test.**2017**, 61, 17–26. [Google Scholar] [CrossRef] - Zangana, S.; Epaarachchi, J.; Ferdous, W.; Leng, J. A novel hybridised composite sandwich core with Glass, Kevlar and Zylon fibres—Investigation under low-velocity impact. Int. J. Impact Eng.
**2020**, 137, 103430. [Google Scholar] [CrossRef] - Vlot, A. Impact properties of Fibre Metal Laminates. Compos. Eng.
**1993**, 3, 911–927. [Google Scholar] [CrossRef] - Lin, H.J.; Lee, Y.J. Impact-Induced Fracture in Laminated Plates and Shells. J. Compos. Mater.
**1990**, 24, 1179–1199. [Google Scholar] [CrossRef] - Krishnamurthy, K.S.; Mahajan, P.; Mittal, R.K. Impact response and damage in laminated composite cylindrical shells. Compos. Struct.
**2003**, 59, 15–36. [Google Scholar] [CrossRef] - Zhao, G.P.; Cho, C.D. Damage initiation and propagation in composite shells subjected to impact. Compos. Struct.
**2007**, 78, 91–100. [Google Scholar] [CrossRef] - Luo, X.C.; Zhang, T.; Wang, Q.S. Ply Thickness’ Effect on Composite Laminate under Low-Velocity Impact. Adv. Mater. Res.
**2014**, 989–994, 74–78. [Google Scholar] [CrossRef] - Zhang, A.Y.; Zhang, Z.J.; Jia, Z.; Zhang, Y.; Zhang, D.X. Experimental Research on the Effects of Dimension on the Impact Damage of CFRP Laminates. Appl. Mech. Mater.
**2013**, 395–396, 64–67. [Google Scholar] [CrossRef] - Harris, W.; Soutis, C.; Atkin, C. Impact Response of Curved Composite Laminates: Effect of Radius and Thickness. Appl. Compos. Mater.
**2020**, 27, 555–573. [Google Scholar] [CrossRef] - Qian, Y.; Swanson, S.R.; Nuismer, R.J.; Bucinell, R.B. An Experimental Study of Scaling Rules for Impact Damage in Fiber Composites. J. Compos. Mater.
**1990**, 24, 559–570. [Google Scholar] [CrossRef] - Easy Composites. XC130 Autoclave Cure Component Prepreg—Technical Datasheet. 2017. [Google Scholar]
- Geng, P.; Xing, J.Z.; Chen, X.X. Winding angle optimization of filament-wound cylindrical vessel under internal pressure. Arch. Appl. Mech.
**2017**, 87, 365–384. [Google Scholar] [CrossRef] - British Standards Institution. BS EN 12633-2:2010: Railway Applications—Structural Requirements of Railway Vehicle Bodies; BSI: London, UK, 2010. [Google Scholar]
- Ibrahim, A.; Ryu, Y.; Saidpour, M. Stress Analysis of Thin-Walled Pressure Vessels. Mod. Mech. Eng.
**2015**, 5, 9. [Google Scholar] [CrossRef][Green Version] - ANSYS Inc. Ansys Mechanical Pro 2021 R1; ANSYS Inc.: Canonsburg, PA, USA, 2021. [Google Scholar]
- ASTM D7136/D7136M-12. Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Sjoblom, P.O.; Hartness, J.T.; Cordell, T.M. On Low-Velocity Impact Testing of Composite Materials. J. Compos. Mater.
**1988**, 22, 30–52. [Google Scholar] [CrossRef] - Davies, G.A.O.; Zhang, X. Impact damage prediction in carbon composite structures. Int. J. Impact Eng.
**1995**, 16, 149–170. [Google Scholar] [CrossRef] - Aymerich, F.; Bucchioni, A.; Priolo, P. Impact Behaviour of Quasi-Isotropic Graphite-Peek Laminates. Key Eng. Mater.
**1997**, 144, 63–74. [Google Scholar] [CrossRef] - Curson, A.D.; Leach, D.C.; Moore, D.R. Impact Failure Mechanisms in Carbon Fiber/PEEK Composites. J. Thermoplast. Compos. Mater.
**1990**, 3, 24–31. [Google Scholar] [CrossRef] - Hyung Yun, C.; Chang, F.-K. A Model for Predicting Damage in Graphite/Epoxy Laminated Composites Resulting from Low-Velocity Point Impact. J. Compos. Mater.
**1992**, 26, 2134–2169. [Google Scholar] [CrossRef] - De Freitas, M.; Silva, A.; Reis, L. Numerical evaluation of failure mechanisms on composite specimens subjected to impact loading. Compos. Part B Eng.
**2000**, 31, 199–207. [Google Scholar] [CrossRef] - Ehrich, F. Low Velocity Impact on Pre-Loaded Composite Structures. Ph.D. Thesis, Imperial College London, London, UK, 2014. [Google Scholar]

**Figure 2.**The filament winding manufacturing process for the production of large composite cylindrical structures (Source: Spirit AeroSystems).

**Figure 3.**CES material selection chart for fatigue strength at 10

^{7}cycles against specific stiffness for “composites” and “ferrous and non-ferrous metals” with the applied attribute limits of fatigue and fracture toughness constraints. Each of the bubbles represents a material and the large, transparent bubbles represent the labelled bulk material groups.

**Figure 4.**The underside of a composite tank wagon and the associated forces acting on an extracted specimen from the centreline of the vessel. The bogie wheelsets have been removed from the figure to aid clarity.

**Figure 5.**Production of the composite coupons using unidirectional CFRP prepreg, using six oriented plies to attain the desired thickness of 1.85 mm.

**Figure 6.**A schematic of the biaxial rig showing how the combined preloading is applied to the composite specimen.

**Figure 7.**Finite element analysis (FEA) of a composite specimen with normal stresses applied in the (

**a**) axial and (

**b**) hoop directions.

**Figure 8.**A schematic of the Rosand type 5 instrumented drop-weight impact tester experimental setup.

**Figure 9.**Schematic of internal cracks and delaminations that form within a composite laminate after impact [72].

**Figure 11.**Failure modes of a composite specimen for four impact energies: 7.85, 11.78, 13.75 and 15.71 J. The scale of 0–3 represents the degree of failure (0 represents no failure mode observed and 3 represents complete failure).

**Figure 12.**Force, ${F}_{R}$, against time, $t$, graph for an unloaded composite specimen at an impact energy of 7.85 J.

**Figure 13.**Force–time plot for impact energies of 7.85, 11.78, 13.75 and 15.71 J for an unloaded specimen using a five-point moving average trendline. The stars, crosses and arrows indicate the damage threshold level (DTL), peak force (${F}_{max}$) and the end of the impact event (impact duration), respectively.

**Figure 14.**Force–time plot for impact energies of 7.85, 11.78, 13.75 and 15.71 J preloaded in three states: unloaded, uniaxial and biaxial, using a five-point moving average trendline. The stars, crosses and arrows indicate the damage threshold level (DTL), maximum force (${F}_{max}$) and the end of the impact event (impact duration), respectively.

**Figure 15.**Mean peak force, ${F}_{max}$, against impact energy, ${E}_{i}$, shown for three different loading conditions: unloaded, uniaxial loading and biaxial loading.

**Figure 16.**Impact energy absorbed, ${E}_{a}$, against impact energy, ${E}_{i}$, shown for three different loading conditions: unloaded, uniaxial loading and biaxial loading.

**Figure 17.**Penetration depth, $\delta $, against mean absorbed energy, ${E}_{a}$, for three different loading conditions: unloaded, uniaxial loading and biaxial loading. Here, 100% penetration depth corresponds to the laminate through-thickness (1.85 mm).

Parameter | Symbol | Value | Unit |
---|---|---|---|

Vehicle loading | ${F}_{v}$ | $1.500\times {10}^{6}$ | N |

Outer radius of vessel | $R$ | 1.400 | m |

* Vessel wall thickness | $T$ | $6.5\times {10}^{-3}$ | m |

Maximum internal pressure | $P$ | $3\times {10}^{5}$ | Pa |

Specimen axial area | ${A}_{1}$ | $1.80\times {10}^{-4}$ | m^{2} |

Specimen hoop area | ${A}_{2}$ | $1.95\times {10}^{-4}$ | m^{2} |

Load Case | Direction | Stress (MPa) | Force (kN) | Torque (Nm) |
---|---|---|---|---|

Unloaded | Axial | 0.00 | 0.00 | 0.00 |

Hoop | 0.00 | 0.00 | 0.00 | |

Uniaxial preload | Axial | 58.60 | 10.55 | 47.50 |

Hoop | 0.00 | 0.00 | 0.00 | |

Biaxial preload | Axial | 58.60 | 10.55 | 47.50 |

Hoop | 64.60 | 12.62 | 56.80 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Street, G.E.; Mistry, P.J.; Johnson, M.S. Impact Resistance of Fibre Reinforced Composite Railway Freight Tank Wagons. *J. Compos. Sci.* **2021**, *5*, 152.
https://doi.org/10.3390/jcs5060152

**AMA Style**

Street GE, Mistry PJ, Johnson MS. Impact Resistance of Fibre Reinforced Composite Railway Freight Tank Wagons. *Journal of Composites Science*. 2021; 5(6):152.
https://doi.org/10.3390/jcs5060152

**Chicago/Turabian Style**

Street, George Edward, Preetum Jayantilal Mistry, and Michael Sylvester Johnson. 2021. "Impact Resistance of Fibre Reinforced Composite Railway Freight Tank Wagons" *Journal of Composites Science* 5, no. 6: 152.
https://doi.org/10.3390/jcs5060152