Variable Stiffness Composites: Optimal Design Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Static Buckling, Free Vibrations, and Static Analyses
Variable Stiffness Composites
2.2. First Order Shear Deformation Theory and Constitutive Relation
2.3. Optimization
Algorithm 1: ASO |
1: Define optimization parameters |
2: While Candidates not stable Do |
3: OSF Procedure |
4: While Candidates not good Do |
5: Kriging response surface Procedure |
6: MISQP Procedure |
7: If Stop criteria is false Do |
8: Evaluate if candidates are good |
9: Else Stop (algorithm not converged) |
10: End |
11: End |
12: Evaluate candidate’s stability |
13: If Candidates not stable Do |
14: Domain reduction Procedure around candidates |
15: End |
16: End (algorithm converged) |
3. Verification Applications
3.1. Case 1: Natural Frequencies of Isotropic Plates
3.2. Case 2: Buckling Critical Loads of Constant Stiffness Composite Plates
3.3. Case 3: Natural Frequencies of Three-Layer Variable Stiffness Composite Plates
4. Numerical Applications
4.1. Static and Buckling Analyses of Three-Layer Variable Stiffness Composite Plates
4.2. Optimization
4.2.1. Single Layer Variable Stiffness Composite Plates
4.2.2. Three-Layer Variable Stiffness Composite Plates
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Zhu, J.; Wu, Z.; Cao, Y.; Zhao, Y.; Zhang, W. A review on the design of laminated composite structures: Constant and variable stiffness design and topology optimization. Adv. Compos. Hybrid Mater. 2018, 1, 460–477. [Google Scholar] [CrossRef]
- Lozano, G.G.; Tiwari, A.; Turner, C.; Astwood, S. A review on design for manufacture of variable stiffness composite laminates. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015, 230, 981–992. [Google Scholar] [CrossRef]
- Setoodeh, S.; Gurdal, Z.; Watson, L.T. Design of variable-stiffness composite layers using cellular automata. Comput. Methods Appl. Mech. Eng. 2006, 195, 836–851. (In English) [Google Scholar] [CrossRef]
- Abdalla, M.M.; Setoodeh, S.; Gürdal, Z. Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters. Compos. Struct. 2007, 81, 283–291. [Google Scholar] [CrossRef]
- Setoodeh, S.; Abdalla, M.M.; Jsselmuiden, S.T.I.; Gürdal, Z. Design of variable-stiffness composite panels for maximum buckling load. Compos. Struct. 2009, 87, 109–117. [Google Scholar] [CrossRef]
- Lopes, C.S.; Gürdal, Z.; Camanho, P.P. Variable-stiffness composite panels: Buckling and first-ply failure improvements over straight-fibre laminates. Comput. Struct. 2008, 86, 897–907. (In English) [Google Scholar] [CrossRef]
- Gürdal, Z.; Tatting, B.F.; Wu, C.K. Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response. Compos. Part A Appl. Sci. Manuf. 2008, 39, 911–922. [Google Scholar] [CrossRef]
- Hao, P.; Yuan, X.; Liu, H.; Wang, B.; Liu, C.; Yang, D.; Zhan, S. Isogeometric buckling analysis of composite variable-stiffness panels. Compos. Struct. 2017, 165, 192–208. [Google Scholar] [CrossRef]
- Honda, S.; Oonishi, Y.; Narita, Y.; Sasaki, K. Vibration Analysis of Composite Rectangular Plates Reinforced along Curved Lines. J. Syst. Des. Dyn. 2008, 2, 76–86. [Google Scholar] [CrossRef]
- Houmat, A. Three-dimensional free vibration analysis of variable stiffness laminated composite rectangular plates. Compos. Struct. 2018, 194, 398–412. [Google Scholar] [CrossRef]
- Akhavan, H.; Ribeiro, P.; de Moura, M.F.S.F. Large deflection and stresses in variable stiffness composite laminates with curvilinear fibres. Int. J. Mech. Sci. 2013, 73, 14–26. [Google Scholar] [CrossRef]
- Venkatachari, A.; Natarajan, S.; Ganapathi, M. Variable stiffness laminated composite shells—Free vibration characteristics based on higher-order structural theory. Compos. Struct. 2018, 188, 407–414. [Google Scholar] [CrossRef]
- Sarvestani, H.Y.; Akbarzadeh, A.H.; Hojjati, M. Hygro-thermo-mechanical analysis of fiber-steered composite conical panels. Compos. Struct. 2017, 179, 146–160. [Google Scholar] [CrossRef]
- Demir, E.; Yousefi-Louyeh, P.; Yildiz, M. Design of variable stiffness composite structures using lamination parameters with fiber steering constraint. Compos. Part B Eng. 2019, 165, 733–746. [Google Scholar] [CrossRef]
- Shafighfard, T.; Demir, E.; Yildiz, M. Design of fiber-reinforced variable-stiffness composites for different open-hole geometries with fiber continuity and curvature constraints. Compos. Struct. 2019, 226, 111280. [Google Scholar] [CrossRef]
- Hao, P.; Liu, D.; Wang, Y.; Liu, X.; Wang, B.; Li, G.; Feng, S. Design of manufacturable fiber path for variable-stiffness panels based on lamination parameters. Compos. Struct. 2019, 219, 158–169. [Google Scholar] [CrossRef]
- Murugan, S.; Flores, E.I.S.; Adhikari, S.; Friswell, M.I. Optimal design of variable fiber spacing composites for morphing aircraft skins. Compos. Struct. 2012, 94, 1626–1633. [Google Scholar] [CrossRef]
- Murugan, S.; Friswell, M.I. Morphing wing flexible skins with curvilinear fiber composites. Compos. Struct. 2013, 99, 69–75. [Google Scholar] [CrossRef]
- Wu, Z.; Weaver, P.M.; Raju, G.; Kim, B.C. Buckling analysis and optimisation of variable angle tow composite plates. Thin-Walled Struct. 2012, 60, 163–172. [Google Scholar] [CrossRef]
- Reddy, J.N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method, 5th ed.; Butterworth-Heinemann: Oxford, UK, 2000; Volume 1. [Google Scholar]
- Gürdal, Z.; Olmedo, R. Composite laminates with spatially varying fiber orientations—‘Variable stiffness panel concept’. In Proceedings of the 33rd Structures, Structural Dynamics and Materials Conference, Dallas, TX, USA, 13–15 April 1992. [Google Scholar]
- Waldhart, C.; Gurdal, Z.; Ribbens, C. Analysis of tow placed, parallel fiber, variable stiffness laminates. In Proceedings of the 37th Structure, Structural Dynamics and Materials Conference, Salt Lake City, UT, USA, 15–17 April 1996. [Google Scholar]
- Reissner, E. On the theory of transverse bending of elastic plates. Int. J. Solids Struct. 1976, 12, 545–554. [Google Scholar] [CrossRef]
- Mindlin, R.D. Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. J. Appl. Mech. Asme 1951, 18, 31–38. [Google Scholar]
- Loja, M.A.R.; Barbosa, J.I.; Soares, C.M.M. Dynamic instability of variable stiffness composite plates. Compos. Struct. 2017, 182, 402–411. [Google Scholar] [CrossRef]
- Mota, A.F.; Loja, M.A.R.; Barbosa, J.I.; Rodrigues, J.A. Porous functionally graded plates: An assessment of shear correction factor influence on static behavior. Math. Comput. Appl. 2020, 25, 25. [Google Scholar]
- Moré, J.J.; Wright, S.J. Optimization Software Guide; Frontiers in Applied Mathematics; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1993. [Google Scholar]
- Yang, X.; He, X. Introduction to Optimization; Springer Nature: Basel, Switzerland, 2019. [Google Scholar]
- ANSYS DesignXplorer User’s Guide; ANSYS, Inc.: Fort Williams, PA, USA, 2020.
- Silva, T.A.N.; Loja, M.A.R.; Maia, N.M.M.; Barbosa, J.I. A hybrid procedure to identify the optimal stiffness coefficients of elastically restrained beams. Int. J. Appl. Math. Comput. Sci. 2015, 25, 245–257. [Google Scholar] [CrossRef]
- MathWorks. Available online: https://www.mathworks.com/ (accessed on 23 June 2020).
- Phan, N.D.; Reddy, J.N. Analysis of Laminated Composite Plates Using a Higher-Order Shear Deformation-Theory. Int. J. Numer. Methods Eng. 1985, 21, 2201–2219. [Google Scholar] [CrossRef]
- Akhavan, H.; Ribeiro, P. Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers. Compos. Struct. 2011, 93, 3040–3047. (In English) [Google Scholar] [CrossRef]
Mode | SSSS | CCCC | SFSF | CFCF | ||||
---|---|---|---|---|---|---|---|---|
CLPT | FSDT | CLPT | FSDT | CLPT | FSDT | CLPT | FSDT | |
1 | 19.737 (0.010) | 19.739 | 35.975 (0.031) | 36.006 | 3.367 (0.089) | 3.367 | 6.920 (0.058) | 6.923 |
2 | 49.337 (0.022) | 49.350 | 73.364 (0.042) | 73.483 | 17.318 (0.046) | 17.316 | 23.908 (0.063) | 23.914 |
3 | 49.337 (0.022) | 49.350 | 73.364 (0.042) | 73.483 | 19.293 (0.078) | 19.293 | 26.584 (0.026) | 26.590 |
4 | 78.922 (0.044) | 78.959 | 108.127 (0.084) | 108.629 | 38.214 (0.196) | 38.211 | 47.655 (0.031) | 47.675 |
5 | 98.666 (0.642) | 98.695 | 131.508 (0.206) | 131.755 | 51.044 (0.513) | 51.036 | 62.710 (0.223) | 62.718 |
6 | 98.666 (0.642) | 98.695 | 132.138 (0.205) | 132.471 | 53.492 (0.705) | 53.488 | 65.536 (0.227) | 65.557 |
Mode | SSSS | CCCC | SFSF | CFCF | ||||
---|---|---|---|---|---|---|---|---|
CLPT | FSDT | CLPT | FSDT | CLPT | FSDT | CLPT | FSDT | |
1 | 71.552 (0.004) | 71.585 | 147.757 | 147.939 | 8.247 (0.243) | 8.247 | 24.830 (0.068) | 24.831 |
2 | 101.154 (0.010) | 101.202 | 173.758 | 173.957 | 29.568 (0.125) | 29.571 | 44.562 (0.079) | 44.565 |
3 | 150.490 (0.333) | 150.595 | 221.295 | 221.568 | 64.478 (0.820) | 64.492 | 81.496 (0.214) | 81.519 |
4 | 219.559 (1.530) | 219.812 | 291.595 | 292.084 | 98.684 (0.154) | 98.737 | 135.810 (1.769) | 135.910 |
5 | 256.587 (0.009) | 257.093 | 384.200 | 385.100 | 117.791 (2.473) | 117.857 | 142.475 (3.188) | 142.607 |
6 | 286.171 (0.017) | 286.711 | 394.201 | 395.538 | 125.624 (0.705) | 125.690 | 165.002 (0.236) | 165.144 |
E1/E2 | Present FSDT | HSDT | |
---|---|---|---|
k Calculated | k = 5/6 | [33] | |
10 | 10.061 (2.936) | 10.076 (3.090) | 9.774 |
20 | 15.606 (2.013) | 15.633 (2.190) | 15.298 |
30 | 20.186 (1.147) | 20.235 (1.393) | 19.957 |
40 | 24.045 (3.021) | 24.131 (3.389) | 23.34 |
a (m) | h (m) | E1 (GPa) | E2 (GPa) | G12 (GPa) | ν12 | ρ (kg·m−1) |
---|---|---|---|---|---|---|
1 | 0.01 | 173 | 7.2 | 3.76 | 0.29 | 1540 |
Stacking | Models | ω (rad·s−1) | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
(<0|45>, <−45|−60>, <0|45>) | Present | 355.30 | 586.66 | 958.69 | 1070.28 | 1317.52 | 1464.42 |
[26] | 347.1 (2.36) | 576.1 (1.83) | 949.31 (0.99) | 1066.64 (0.34) | 1300.47 (1.31) | 1457.21 (0.50) | |
[34] | 358.49 (0.89) | 589.9 (0.55) | 960.36 (0.17) | 1075.21 (0.46) | 1327.88 (0.78) | 1474.67 (0.70) | |
(<30|0>, <45|90>, <30|0>) | Present | 308.66 | 503.63 | 845.09 | 1130.41 | 1276.93 | 1305.21 |
[26] | 308.03 (0.20) | 502.03 (0.32) | 842.79 (0.27) | 1133.79 (0.30) | 1277.26 (0.03) | 1300.73 (0.34) | |
[34] | 308.8 (0.05) | 503.8 (0.03) | 845.51 (0.05) | 1131.31 (0.08) | 1279.85 (0.23) | 1307.4 (0.17) | |
(<90|45>, <60|30>, <90|45>) | Present | 326.20 | 533.07 | 880.53 | 1082.91 | 1259.90 | 1388.02 |
[26] | 320.05 (1.92) | 521.15 (2.29) | 877.23 (0.38) | 1084.42 (0.14) | 1238.85 (1.70) | 1395.8 (0.56) | |
[34] | 329.69 (1.06) | 539.41 (1.18) | 886.39 (0.66) | 1091.2 (0.76) | 1279.9 (1.56) | 1401.87 (0.99) |
Layers | Boundary Condition | ||||||
---|---|---|---|---|---|---|---|
SSSS | CCCC | SSFF | CCFF | SFSF | CFCF | ||
Pressure (kPa) | 1 | 1 | 1 | 0.1 | 0.1 | 0.01 | 0.1 |
3 | 10 | 10 | 1 | 1 | 0.1 | 1 |
Stacking | Boundary Condition | |||||
---|---|---|---|---|---|---|
SSSS | CCCC | SSFF | CCFF | SFSF | CFCF | |
(<0|45>, <−45|−60>, <0|45>) | 7.894 | 3.005 | 1.456 | 0.411 | 8.571 | 10.834 |
(<30|0>, <45|90>, <30|0>) | 10.83 | 2.285 | 2.167 | 0.339 | 15.657 | 7.100 |
(<90|45>, <60|30>, <90|45>) | 9.736 | 2.016 | 18.951 | 1.938 | 10.382 | 9.388 |
Stacking | Loading | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
(<0|45>, <−45|−60>, <0|45>) | Uniaxial | 2.12 | 3.865 | 5.519 | 6.625 | 7.337 | 8.122 |
Biaxial | 1.091 | 1.208 | 1.678 | 2.384 | 3.08 | 3.203 | |
(<30|0>, <45|90>, <30|0>) | Uniaxial | 1.451 | 3.091 | 4.765 | 5.651 | 6.895 | 7.987 |
Biaxial | 0.794 | 0.831 | 1.218 | 1.742 | 2.327 | 2.880 | |
(<90|45>, <60|30>, <90|45>) | Uniaxial | 1.006 | 1.132 | 1.674 | 1.937 | 2.684 | 3.153 |
Biaxial | 0.658 | 0.750 | 1.148 | 1.585 | 2.083 | 2.295 |
Properties | SSSS | SSFF | SFSF | |||
---|---|---|---|---|---|---|
CS | VS | CS | VS | CS | VS | |
T0 (°) | 0 | 19.124 | 0 | 0.005 | −45 | −41.002 |
T1 (°) | 0 | −62.531 | 0 | 0.017 | −45 | −50.329 |
(mm) | 25.118 | 21.526 | 2.540 | 2.540 | 11.963 | 11.843 |
Decrease (%) | - | 14.301 | - | 0 | - | 1.003 |
Properties | CCCC | CCFF | CFCF | |||
---|---|---|---|---|---|---|
CS | VS | CS | VS | CS | VS | |
T0 (°) | 0 | 0.015 | 0 | 0.000 | 78.174 | 30.998 |
T1 (°) | 0 | −0.004 | 0 | −0.001 | 78.174 | −1.155 |
(mm) | 5.109 | 5.109 | 0.501 | 0.501 | 20.101 | 19.193 |
Decrease (%) | - | 0 | - | 0 | - | 4.517 |
Properties | SSSS | SSFF | SFSF | |||
---|---|---|---|---|---|---|
CS | VS | CS | VS | CS | VS | |
T0 (°) | 0 | 22.828 | 0 | 0 | −45 | −40.493 |
T1 (°) | 0 | −62.043 | 0 | 0 | −45 | −51.166 |
(Hz) | 17.224 | 18.630 | 16.032 | 16.032 | 2.932 | 2.950 |
Increase (%) | - | 8.164 | - | 0 | - | 0.614 |
Properties | CCCC | CCFF | CFCF | |||
---|---|---|---|---|---|---|
CS | VS | CS | VS | CS | VS | |
T0 (°) | 0 | −90 | 0 | 0 | 76.852 | −40.493 |
T1 (°) | 0 | −1.680 | 0 | 0 | 76.852 | −51.166 |
(Hz) | 37.664 | 39.498 | 36.324 | 36.324 | 6.671 | 2.950 |
Increase (%) | - | 4.869 | - | 0 | - | 4.062 |
Properties | SSSS | SSFF | SFSF | |||
---|---|---|---|---|---|---|
CS | VS | CS | VS | CS | VS | |
T0 (°) | 0 | 23.057 | 0 | 0 | 43.256 | 34.701 |
T1 (°) | 0 | −57.401 | 0 | 0 | 43.256 | 49.791 |
6.091 | 7.063 | 5.278 | 5.278 | 0.319 | 0.325 | |
Increase (%) | - | 15.958 | - | 0 | - | 1.881 |
Properties | CCCC | CCFF | CFCF | |||
---|---|---|---|---|---|---|
CS | VS | CS | VS | CS | VS | |
T0 (°) | 0 | 0 | 0 | 0 | 12.386 | 15.750 |
T1 (°) | 0 | 0 | 0 | 0 | 12.386 | 7.048 |
22.672 | 22.672 | 21.098 | 21.098 | 1.881 | 1.891 | |
Increase (%) | - | 0 | - | 0 | - | 1.891 |
Properties | SSSS | SSFF | SFSF | |||
---|---|---|---|---|---|---|
CS | VS | CS | VS | CS | VS | |
T0 (°) | 69.748 | 27.047 | 0 | 0 | −45 | −43.145 |
T1 (°) | 69.748 | −66.919 | 0 | 0 | −45 | −47.282 |
2.594 | 3.721 | 1.331 | 1.331 | 0.175 | 0.175 | |
Increase (%) | - | 43.448 | - | 0 | - | 0 |
Properties | CCCC | CCFF | CFCF | |||
---|---|---|---|---|---|---|
CS | VS | CS | VS | CS | VS | |
T0 (°) | 0 | 10.852 | 16.874 | 79.914 | 45 | 60.389 |
T1 (°) | 0 | −83.098 | 16.874 | −14.036 | 45 | 39.411 |
5.699 | 6.659 | 2.890 | 3.626 | 0.987 | 1.033 | |
Increase (%) | - | 16.845 | - | 25.467 | - | 4.661 |
Layer | Properties | SSSS | SSFF | SFSF | |||
---|---|---|---|---|---|---|---|
CS | VS | CS | VS | CS | VS | ||
1 | T0 (°) | −45 | −25.008 | 0 | 0 | 45 | 47.528 |
T1 (°) | −45 | 62.886 | 0 | 0 | 45 | 42.625 | |
2 | T0 (°) | 45 | 26.499 | 0 | 0 | 45 | 49.833 |
T1 (°) | 45 | 41.007 | 0 | 0 | 45 | 40.039 | |
3 | T0 (°) | −45 | −15.557 | 0 | 0 | −45 | −42.512 |
T1 (°) | −45 | −54.835 | 0 | 0 | −45 | −47.796 | |
(mm) | 8.529 | 7.569 | 0.945 | 0.945 | 2.718 | 2.704 | |
Decrease (%) | - | 11.2578 | - | 0 | - | 0.515123 |
Layer | Properties | CCCC | CCFF | CFCF | |||
---|---|---|---|---|---|---|---|
CS | VS | CS | VS | CS | VS | ||
1 | T0 (°) | 0 | 90 | 0 | 0 | 12.422 | 36.051 |
T1 (°) | 0 | 90 | 0 | 0 | 12.422 | 0.913 | |
2 | T0 (°) | 0 | −90 | 0 | 0 | 46.505 | −70.004 |
T1 (°) | 0 | −90 | 0 | 0 | 46.505 | −35.080 | |
3 | T0 (°) | 0 | 90 | 0 | 0 | 12.419 | 36.047 |
T1 (°) | 0 | 90 | 0 | 0 | 12.419 | 0.917 | |
(mm) | 1.930 | 1.930 | 0.189 | 0.189 | 7.458 | 6.667 | |
Decrease (%) | - | 0 | - | 0 | - | 10.605 |
Layer | Properties | Fundamental Frequency | |
---|---|---|---|
CS | VS | ||
1 | T0 (°) | −45 | 16.715 |
T1 (°) | −45 | −60.572 | |
2 | T0 (°) | 45 | 57.990 |
T1 (°) | 45 | 38.114 | |
3 | T0 (°) | −45 | 16.720 |
T1 (°) | −45 | −60.573 | |
(Hz) | 54.937 | 58.016 | |
Increase (%) | - | 5.605 |
Layer | Properties | Uniaxial Buckling | Biaxial Buckling | ||
---|---|---|---|---|---|
CS | VS | CS | VS | ||
1 | T0 (°) | −6.925 | 30.476 | −45 | 23.369 |
T1 (°) | −6.925 | −59.626 | −45 | −62.232 | |
2 | T0 (°) | 41.121 | 71.359 | 45 | −19.928 |
T1 (°) | 41.121 | 41.604 | 45 | 73.375 | |
3 | T0 (°) | −6.925 | 30.473 | −45 | 23.355 |
T1 (°) | −6.925 | −59.626 | −45 | −62.236 | |
1.698 | 2.565 | 0.818 | 1.293 | ||
Increase (%) | - | 51.128 | - | 58.005 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, F.E.C.; Mota, A.F.S.d.; Loja, M.A.R. Variable Stiffness Composites: Optimal Design Studies. J. Compos. Sci. 2020, 4, 80. https://doi.org/10.3390/jcs4020080
Marques FEC, Mota AFSd, Loja MAR. Variable Stiffness Composites: Optimal Design Studies. Journal of Composites Science. 2020; 4(2):80. https://doi.org/10.3390/jcs4020080
Chicago/Turabian StyleMarques, Filipe Eduardo Correia, Ana Filipa Santos da Mota, and Maria Amélia Ramos Loja. 2020. "Variable Stiffness Composites: Optimal Design Studies" Journal of Composites Science 4, no. 2: 80. https://doi.org/10.3390/jcs4020080
APA StyleMarques, F. E. C., Mota, A. F. S. d., & Loja, M. A. R. (2020). Variable Stiffness Composites: Optimal Design Studies. Journal of Composites Science, 4(2), 80. https://doi.org/10.3390/jcs4020080