Effect of Surface Roughness and Skin–Core Structure of Dry-Jet Wet-Spun T800G Carbon Fiber on the Impact Resistance of Carbon Fiber-Reinforced Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Tests for CF Surface Morphology
2.3. Tests for CF Skin–Core Structure
2.4. Tests for CFRC DWI and CAI
3. Results and Discussion
3.1. Surface Morphology
3.2. Skin–Core Structure
3.3. DWI and CAI of CFRCs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CF-low | Carbon fibers produced with low-concentration coagulation bath |
| CF-high | Carbon fibers produced with high-concentration coagulation bath |
| CFRC | Carbon fiber composite |
| CFs | Carbon fibers |
| EP | Epoxy resin |
| FMI | Fiber–matrix interface |
| SEM | Scanning Electron Microscopy |
| AFM | Atomic Force Microscopy |
| SEM–Raman | Scanning Electron Microscopy–Raman |
| CAI | Compression after impact |
| DWI | Drop-Weight Impact |
References
- Aldosari, S.M.; AlOtaibi, B.M.; Alblalaihid, K.S.; Aldoihi, S.A.; AlOgab, K.A.; Alsaleh, S.S.; Alshamary, D.O.; Alanazi, T.H.; Aldrees, S.D.; Alshammari, B.A. Mechanical Recycling of Carbon Fiber-Reinforced Polymer in a Circular Economy. Polymers 2024, 16, 1363. [Google Scholar] [CrossRef]
- Brooks, R.A.; Liu, J.; Hall, Z.E.C.; Joesbury, A.M.; Harper, L.T.; Liu, H.; Kinloch, A.J.; Dear, J.P. The Relationship Between the Extent of Indentation and Impact Damage in Carbon-Fibre Reinforced-Plastic Composites after a Low-Velocity Impact. Appl. Compos. Mater. 2024, 31, 1869–1888. [Google Scholar] [CrossRef]
- Al Zahmi, S.; Alhammadi, S.; ElHassan, A.; Ahmed, W. Carbon Fiber/PLA Recycled Composite. Polymers 2022, 14, 2194. [Google Scholar] [CrossRef]
- Brown, K.R.; Harrell, T.M.; Skrzypczak, L.; Scherschel, A.; Wu, H.F.; Li, X.D. Carbon fibers derived from commodity polymers: A review. Carbon 2022, 196, 422–439. [Google Scholar] [CrossRef]
- Ursache, Ș.; Cerbu, C.; Hadăr, A. Characteristics of Carbon and Kevlar Fibres, Their Composites and Structural Applications in Civil Engineering—A Review. Polymers 2024, 16, 127. [Google Scholar] [CrossRef]
- Katouzian, M.; Vlase, S.; Marin, M.; Scutaru, M.L. Modeling Study of the Creep Behavior of Carbon-Fiber-Reinforced Com-posites: A Review. Polymers 2023, 15, 194. [Google Scholar]
- Newman, B.; Creighton, C.; Henderson, L.C.; Stojcevski, F. A review of milled carbon fibres in composite materials. Compos. Part A Appl. Sci. Manuf. 2022, 163, 107249. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, Z.; Meng, L. Effects of ozone method treating carbon fibers on mechanical properties of carbon/carbon composites. Mater. Chem. Phys. 2006, 97, 167–172. [Google Scholar] [CrossRef]
- Sharma, H.; Kumar, A.; Rana, S.; Guadagno, L. An Overview on Carbon Fiber-Reinforced Epoxy Composites: Effect of Graphene Oxide Incorporation on Composites Performance. Polymers 2022, 14, 1548. [Google Scholar] [CrossRef]
- Torokhov, V.G.; Chukov, D.I.; Tcherdyntsev, V.V.; Stepashkin, A.A.; Zadorozhnyy, M.Y. Influence of Interfacial Interaction and Composition on Fracture Toughness and Impact Properties of Carbon Fiber-Reinforced Polyethersulfone. Polymers 2024, 16, 860. [Google Scholar] [CrossRef]
- Li, S.; Liu, W.; Mao, Y.; Hou, S. Numerical cross-scale optimization of homogenized composite laminates under impact loading. Int. J. Mech. Sci. 2023, 245, 108108. [Google Scholar] [CrossRef]
- Nunna, S.; Naebe, M.; Hameed, N.; Fox, B.L.; Creighton, C. Evolution of radial heterogeneity in polyacrylonitrile fibres during thermal stabilization: An overview. Polym. Degrad. Stab. 2017, 136, 20–30. [Google Scholar] [CrossRef]
- Dilsiz, N.; Wightman, J.P. Surface analysis of unsized and sized carbon fibers. Carbon 1999, 37, 1105–1114. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Z.H.; Ma, Q.S.; Hu, H.F.; Zheng, W.W. Effect of fiber surface state on mechanical properties of Cf/Si-O-C composites. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2005, 407, 245–249. [Google Scholar] [CrossRef]
- Choi, J.; Jeon, C.; Lee, J.-E.; Lee, G.-H.; Hwang, S.; Han, M.; Lee, S.; Gwak, H.J.; Lee, E.; Won, J.S.; et al. Optimization of the carbonization process based on the evolution of microstructural components of polyacrylonitrile (PAN)-based fibers. Carbon 2025, 235, 120058. [Google Scholar] [CrossRef]
- Wang, A.; Li, R.; Liu, X. Analysis of the Tensile Properties and Probabilistic Characteristics of Large-Tow Carbon Fiber-Reinforced Polymer Composites. Polymers 2024, 16, 2197. [Google Scholar] [CrossRef]
- Jäger, J.; Moosburger-Will, J.; Horn, S. Determination of nano-roughness of carbon fibers by atomic force microscopy. J. Mater. Sci. 2013, 48, 6803–6810. [Google Scholar] [CrossRef]
- Song, W.; Gu, A.; Liang, G.; Yuan, L. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites. Appl. Surf. Sci. 2011, 257, 4069–4074. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Y.; Ge, Y.; Ran, L.; Peng, K.; Yi, M. Surface structures of PAN-based carbon fibers and their influences on the interface formation and mechanical properties of carbon-carbon composites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 480–488. [Google Scholar] [CrossRef]
- Andreas, H. The Influence of Roughness on Surface Enhanced Effects; Austrian Science Fund (FWF): Vienna, Austria, 2009. [Google Scholar]
- Cai, H.; Xi, J.; Chen, Y.; Ye, L. A novel micro-mechanical model for continuous carbon fiber-reinforced composites: Effect of fiber surface roughness on mechanical behaviors. Compos. Struct. 2025, 357, 118960. [Google Scholar] [CrossRef]
- Lee, J.-E.; Choi, J.; Lee, D.J.; Lee, S.; Chae, H.G. Radial microstructure development of polyacrylonitrile (PAN)-based carbon fibers. Carbon 2022, 191, 515–524. [Google Scholar] [CrossRef]
- Nunna, S.; Setty, M.; Naebe, M. Formation of skin-core in carbon fibre processing: A defect or an effect? Express Polym. Lett. 2019, 13, 146–158. [Google Scholar] [CrossRef]
- Sun, M.; Shao, R.; Wang, W.; Ma, T.; Li, T.; Huang, W.; Liu, Y.; Xue, Y.; Pei, X.; Xu, Z. Advances in Insight of Radial Heterogeneous Microstructure and Its Relevance to Mechanical Properties of Polyacrylonitrile-Based Carbon Fibers. Adv. Eng. Mater. 2023, 25, 2300413. [Google Scholar] [CrossRef]
- Sun, L.; Shang, L.; Xiao, L.; Zhang, M.; Ao, Y.; Li, M. The influence of stabilization efficiency on skin–core structure and properties of polyacrylonitrile fibers. J. Mater. Sci. 2020, 55, 3408–3418. [Google Scholar] [CrossRef]
- Zhu, J.; Gao, Z.; Mao, Q.; Gao, Y.; Li, Y.; Zhang, X.; Gao, Q.; Jiang, M.; Lee, S.; van Duin, A.C. Advances in developing cost-effective carbon fibers by coupling multiscale modeling and experiments: A critical review. Prog. Mater. Sci. 2024, 146, 101329. [Google Scholar] [CrossRef]
- Qi, G.; Zhang, B.; Du, S.; Yu, Y. Estimation of aramid fiber/epoxy interfacial properties by fiber bundle tests and multiscale modeling considering the fiber skin/core structure. Compos. Struct. 2017, 167, 1–10. [Google Scholar] [CrossRef]
- Wang, N.; Li, Z.; Peng, Y.; Jiang, Z.; Li, H. Micro–Macro Coupling Study on the Mechanical Properties of Continuous Fiber-Reinforced Composites. Polymers 2024, 16, 2995. [Google Scholar] [CrossRef]
- Kim, D.-W.; Kim, D.H.; Kim, S.R.; Kim, B.-H.; Bang, Y.H.; Yang, D.J.; Choi, G.B.; Kim, Y.A.; Yang, K.S. Effect of low processing rate on homogeneous microstructural evolution of polyacrylonitrile-based carbon fibers. Carbon Lett. 2019, 29, 479–485. [Google Scholar] [CrossRef]
- Duan, Z.; Li, W.; Liu, H.; Shen, P.; Yang, H.; Zhong, X.; Bao, J. Synergetic Improvement of Interfacial Performance and Impact Resistance of Carbon Fiber-Reinforced Epoxy Composite via Continuous Electrochemical Oxidation. Polymers 2025, 17, 1007. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Zhang, R.; He, M.; Wang, C.; Liu, L.; Zhao, L.; Wen, Z.; Ding, Z. Interfacial microstructure and mechanical properties of carbon fiber composites by fiber surface modification with poly(amidoamine)/polyhedral oligomeric silsesquioxane. Compos. Part A Appl. Sci. Manuf. 2016, 90, 653–661. [Google Scholar] [CrossRef]
- Ma, T.; Shao, R.; Wang, W.; Liu, S.; Min, C.; Jiang, W.; Li, T.; Xu, Z. Enhanced graphitization and reduced radial heterogeneity of carbon fibers inheriting from irradiated/thermo-chemically stabilized PAN-fibers. Polymer 2024, 308, 127347. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, J.; Lu, K.; Xiang, Y.; Liu, Y. The evolution of carbon fiber elements and their effects on fiber mechanical properties from molecular dynamics. Comput. Mater. Sci. 2023, 220, 112029. [Google Scholar] [CrossRef]
- Jen, Y.-M.; Chen, Y.-J.; Yu, T.-H. Improving the Impact Resistance and Post-Impact Tensile Fatigue Damage Tolerance of Carbon Fiber Reinforced Epoxy Composites by Embedding the Carbon Nanoparticles in Matrix. Polymers 2024, 16, 3589. [Google Scholar] [CrossRef]
- Dinh, D.T.; Ninh, H.D.; Nguyen, H.T.; Nguyen, D.H.; Nguyen, G.V.; Nguyen, T.H.; Pham, K.T.; La, D.D. Polyamide 6/carbon fibre composite: An investigation of carbon fibre modifying pathways for improving mechanical properties. Plast. Rubber Compos. 2024, 53, 190–199. [Google Scholar] [CrossRef]
- Cui, J.; Yan, S.; Zhao, Y.; Jiang, L. Low-Velocity Impact and Residual Compression Performance of Carbon Fiber Reinforced Composite Stiffened Plates. Appl. Compos. Mater. 2023, 30, 1185–1206. [Google Scholar] [CrossRef]
- Olhan, S.; Antil, B.; Behera, B. Low-velocity impact and quasi-static post-impact compression analysis of woven structural composites for automotive: Influence of fibre types and architectural structures. Compos. Struct. 2025, 352, 118676. [Google Scholar] [CrossRef]
- Ji, B.H. Effect of Coagulation Bath Concentration on the Structure and Properties of Polyacrylonitrile as-Spun Fibers during Wet-Spinning. Adv. Mater. Res. 2011, 287–290, 1832–1836. [Google Scholar] [CrossRef]
- ASTM D7136; Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D7137; Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates. ASTM International: West Conshohocken, PA, USA, 2020.
- Mohsin, M.A.A.; Iannucci, L.; Greenhalgh, E.S. Experimental and Numerical Analysis of Low-Velocity Impact of Carbon Fibre-Based Non-Crimp Fabric Reinforced Thermoplastic Composites. Polymers 2021, 13, 3642. [Google Scholar] [CrossRef]
- Zaitsev, B.N.; Baklanova, N.I.; Zima, T.M. Atomic force microscopy study of surface-modified carbon fibers. Inorg. Mater. 2008, 44, 592–597. [Google Scholar] [CrossRef]
- Sha, Y.; Liu, W.; Li, Y.; Cao, W. Formation Mechanism of Skin-Core Chemical Structure within Stabilized Polyacrylonitrile Monofilaments. Nanoscale Res. Lett. 2019, 14, 93. [Google Scholar] [CrossRef]
- Hao, J.; An, F.; Yu, Y.; Zhou, P.; Liu, Y.; Lu, C. Effect of coagulation conditions on solvent diffusions and the structures and tensile properties of solution spun polyacrylonitrile fibers. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Nguyen, N.L.T.; Maghe, M.; Mota-Santiago, P.; Creighton, C.; Groetsch, T.; Nunna, S.; Varley, R.J. Increasing oxygen diffusion during rapid stabilization of a PAN precursor fibre and its impact on the microstructure and properties of carbon fibre. Mater. Today Commun. 2025, 45, 112329. [Google Scholar] [CrossRef]













| CF Type | Coagulation Bath Concentration | Tensile Strength (MPa) | Tensile Modulus (GPa) | Elongation (%) |
|---|---|---|---|---|
| CF-low | Low | 5800 | 295 | 2.10 |
| CF-high | High | 5800 | 295 | 2.10 |
| Matrix Type | Curing Temperature (°C) | Glass Transition Temperature (°C) | Tensile Strength (MPa) | Fracture Toughness KIC (MPa·m1/2) | Fracture Toughness GIC (J/m2) |
|---|---|---|---|---|---|
| High-toughness EP | 180 °C/3 h | 180 | 90 | 1.8 | 900 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, H.; Zhou, H.; Hao, D.; Zhang, Y.; Tian, T. Effect of Surface Roughness and Skin–Core Structure of Dry-Jet Wet-Spun T800G Carbon Fiber on the Impact Resistance of Carbon Fiber-Reinforced Composites. J. Compos. Sci. 2026, 10, 44. https://doi.org/10.3390/jcs10010044
Wang H, Zhou H, Hao D, Zhang Y, Tian T. Effect of Surface Roughness and Skin–Core Structure of Dry-Jet Wet-Spun T800G Carbon Fiber on the Impact Resistance of Carbon Fiber-Reinforced Composites. Journal of Composites Science. 2026; 10(1):44. https://doi.org/10.3390/jcs10010044
Chicago/Turabian StyleWang, Han, Hongfei Zhou, Diyi Hao, Yichuan Zhang, and Tiebing Tian. 2026. "Effect of Surface Roughness and Skin–Core Structure of Dry-Jet Wet-Spun T800G Carbon Fiber on the Impact Resistance of Carbon Fiber-Reinforced Composites" Journal of Composites Science 10, no. 1: 44. https://doi.org/10.3390/jcs10010044
APA StyleWang, H., Zhou, H., Hao, D., Zhang, Y., & Tian, T. (2026). Effect of Surface Roughness and Skin–Core Structure of Dry-Jet Wet-Spun T800G Carbon Fiber on the Impact Resistance of Carbon Fiber-Reinforced Composites. Journal of Composites Science, 10(1), 44. https://doi.org/10.3390/jcs10010044
