Biomass Chitosan-Based Composites for Flame Retardancy and Fire Alarm: Advances and Perspectives
Abstract
1. Introduction
2. Biomass CS-Based Materials for Flame Retardancy
2.1. Modification Strategies for Development of CS-Based Flame Retardants
2.1.1. Physical Blending/Nanocomposite

2.1.2. Chemical Modification


2.1.3. LBL Technology
2.2. Various Applications Scenarios
2.3. Flame-Retardant Mechanism
3. Biomass CS-Based Materials for Fire Alarm
3.1. Fire-Warning Performance of CS-Based Fire Alarm
3.2. Fire-Warning Mechanism
| Polymeric Matrix | Filler | Filler Content | LOI (%) | Testing Dimensions for LOI | UL-94 | Testing Dimensions for UL-94 | pHRR (kW/m2) | Multi-Functions | Ref. |
|---|---|---|---|---|---|---|---|---|---|
| Cotton fabric | MP/Nch/PVA | \ | 57.9 | 120 mm × 50 mm | \ | \ | \ | Antimicrobial activity | [20] |
| Aerogels | CS/MMT/CNF | \ | 43 | 100 mm × 10 mm × 10 mm | \ | \ | \ | Superamphiphobic | [15] |
| Aerogels | CH/PK | \ | 33 | 140 mm × 20 mm × 10 mm | V-0 | 140 mm × 10 mm × 1 mm | \ | Biodegradability (56%) | [16] |
| Aerogels | Alginate/CS/MMT | 70% MMT | 75 | \ | \ | \ | \ | \ | [17] |
| Aerogels | CS/APP/MMT | \ | 64.1 | \ | \ | \ | \ | Superamphiphobic (154°) | [18] |
| Film | CS/PA/PVA/A-HNTs | N15E20 | 32.2 | 80 mm × 10 mm | V-0 | 120 mm × 13 mm | 85.31 | UV resistance (<15%) | [23] |
| Film | CS/MMT/Na2Cu(OH)4 | CS/10MMT-Cu | 40.5 | 60mm × 10 mm | \ | \ | \ | Antimicrobial activity | [22] |
| Wooden | CS/NaH2PO4 | PC15 | 51 | 130 mm × 6 mm × 3 mm | V-0 | \ | \ | \ | [11] |
| EP | PA/PUCS | 7.5% PUCS | 31.2 | \ | V-0 | \ | 907 | \ | [26] |
| Wooden | CS/GEL/PA/ZnSO4@Kaol | 3.7% | \ | \ | \ | \ | 205 | \ | [21] |
| PP | CS/SP/MMT | 5% | 30.9 | 80 mm × 100 mm × 3 mm | V-0 | 130 mm × 13 mm × 3 mm | 163 | \ | [24] |
| Aerogels | PCSM/MTMS/H-SiO2 | \ | >80 | \ | V-0 | \ | 8.48 | Superamphiphobic (150.2°) | [19] |
| TPU | CS/PA/Fe-MOF | 1% | \ | \ | \ | \ | 466.2 | \ | [25] |
| Wooden | CS/HEC/BN/MA | HM -4CS@2BN | 27.1 | 80 mm ×10 mm × 4 mm | V-0 | 130 mm × 13 mm × 4 mm | 250.37 | \ | [28] |
| Wooden | CS/MA/BN/Cu/ZIF-8 | \ | 42.8 | 120 mm × 10 mm × 5 mm | V-0 | 120 mm × 10 mm × 5 mm | 138.11 | \ | [27] |
| Aerogels | CS/HGMs | \ | \ | \ | \ | \ | \ | \ | [35] |
| PLA | CS/BPOD/TEPA/TEA | 3 wt% | 29 | 130 mm × 6.5 mm × 3.2 mm | V-0 | 130 mm × 13 mm × 3.2 mm | 423.7 | \ | [36] |
| PLA | CS-TE/AP | 3.75 wt% CSTE | 28.5 | 130 mm × 6.5 mm × 3 mm | V-0 | 130 mm × 13 mm × 3 mm | 210.2 | \ | [37] |
| PLA | CS/PPA | 10 wt% of CPPA | 30.3 | \ | V-0 | \ | 407 | \ | [38] |
| PP | CS/APP/MF | 30% CSAPP@MF | 25.7% | 100 mm × 6.5 mm × 3.2 mm | V-1 | 100 mm × 13 mm × 3.2 mm | 275.89 | \ | [39] |
| Bioplastics | CS/Lignin | 0.25% Lignin | 42–48 | \ | V-0 | \ | \ | \ | [40] |
| Polyester/cotton | CS/H3PO4/SiO2/FAS-17 | 25% PCSU | 30 | 150 mm × 58 mm | \ | \ | 87 | Superamphiphobic (142°) | [41] |
| Polyester/cotton | CMC/HCS/AMVP | T/C-AMVP-g-HCS-26.6 | 30.5 | \ | \ | \ | 179.2 | \ | [42] |
| Cotton fabric | CS/MEL/TSPP | \ | 32 | 300 mm × 76 mm | \ | \ | \ | UV resistance (UPF > 100) | [43] |
| Wooden | ZnPA/COS/DOPO/SiO2 | P2 | \ | \ | \ | \ | 99.39 | \ | [44] |
| Wooden | OCTS/HPA/VMT-NSs-NH2 | \ | 36.7 | \ | \ | \ | 25.48 | \ | [45] |
| PU | CS/PA/PBA | 6 wt% PBA-CS@PA | \ | \ | V-0 | \ | 429.7 | \ | [47] |
| PU | CS/PMPI/MPP | 40 wt% CS-PMPI-MPP | 26.5 | \ | V-1 | \ | 421.4 | \ | [48] |
| Cotton fabric | CS/PA/ESO | ERPC1-EG | 33.5 | \ | V-0 | 10 mm × 10 mm × 50 mm | 99.42 | \ | [49] |
| PU | CS/APP/NDY | 40% CS-APP-NDY | 26.3 | 80 mm × 10 mm × 4 mm | V-1 | 127 mm × 12.7 mm × 3 mm | 399.6 | \ | [50] |
| Wooden | ACS/MACS/PA-UiO66-NH2 | \ | 29.2 | 80 mm × 10 mm × 4 mm | \ | \ | \ | \ | [51] |
| PVA | CS/4-FPB/DOPO | PVA@PBCS | 28.7 | \ | V-0 | \ | 130.8 | \ | [52] |
| EP | HCCP/HCPCP/CS | 9 wt% 3CS-HCPCP | \ | \ | V-0 | 100 mm × 100 mm × 3 mm | 757 | \ | [53] |
| EP | MEL/MH/APP/CS | 7.5CPMM/7.5APP | 30.5 | 130 mm × 6.5 mm × 3 mm | V-0 | \ | 267.1 | \ | [54] |
| Jute fabric | CS/SA/NACL | 3% CH/7% SA | 27 | 130 mm × 6.5 mm × 3 mm | \ | \ | 82.7 | \ | [59] |
| Cotton fabric | AEP/PA/CS | Cot/A/I/ C/P | 38.5 | \ | \ | \ | 96.3 | \ | [97] |
| Cotton fabric | PA/CH/BC | PA/CH/BC(7.5%)-COT | 66.8 | 120 mm × 55 mm | \ | \ | 7.7 | \ | [58] |
| Cotton fabric | CS/H3PO3 | PCS@C15 | 29.9 | 150 mm × 58 mm × 2 mm | \ | \ | 85.3 | \ | [60] |
| TPU | CS/APP/SiO2 | 20 wt% APP | 30.5 | \ | V-0 | \ | 181.42 | \ | [62] |
| EP | SiO2\CTS\APP\DOTO | EP-4 | \ | \ | \ | \ | 366.1 | Superhydrophobic | [63] |
| Polymeric Matrix | Filler | Filler Content | Trigger Temperature (°C) | Response Time | Extra Electrical Voltage (V) | Number of Repeatable Warnings | Multi-Functions | Ref. |
|---|---|---|---|---|---|---|---|---|
| Film | NaOAc/glycerol modification | 5 wt% NaOAc | 120 | 1000 s | \ | At least 3 | \ | [9] |
| Film | NaCl | 5 wt% NaCl | 159 | <1 s | 12 | At least 3 | \ | [78] |
| Film | NaCl/NH4Cl/CaCl2 | \ | \ | \ | \ | 17 | Remote wireless transmission of monitored information | [92] |
| Film | GN/FeCl3/Soy protein isolate/PA/glycero/urea | 5 wt% glycero | \ | 2.6 s | 12 | \ | \ | [93] |
| Film | KH2PO4/GEL | 10 wt% KH2PO4 | 100 | 0.5 s | \ | At least 3 | \ | [94] |
| Film | GEL/LiBr | 15 wt% LiBr | 70~90 | 0.41 s | \ | \ | riboelectric nanogenerator | [95] |
4. Conclusions and Perspectives
4.1. Advances and Challenges
4.2. Perspectives
- AI-assisted molecular design and structural optimization
- Intelligent and multi-functional integration
- Sustainable closed-loop design and recycling strategy
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CS | chitosan | LOI | Limiting Oxygen Index |
| AI | artificial intelligence | MMT | montmorillonite |
| CNF | cellulose nanofibers | PK | phosphated sulfate lignin |
| PEC | polyelectrolyte complexes | PCS | phosphated chitosan |
| H-SiO2 | modified SiO2 nanoparticles | EP | epoxy resin |
| ZIF | zeolitic imidazolate framework | PA | phytic acid |
| MTMS | methytrimethoxylsilan | MP | melamine phosphate |
| PCSM | phosphorylated porous materials | BN | boron nitride |
| PP | polypropylene | PVA | polyvinyl alcohol |
| PU | polyurethane | NDY | N,N-diglycidylaniline |
| PLA | polylactic acid | pHRR | peak of heat release rate |
| ZnPA | zinc phytate | AP | aluminum pypophosphite |
| AMVP | ammonium vinyl phosphonate | THR | total heat release |
| ERP | bio-based PUF matrix | COS | chitosan oligosaccharide |
| HCCP | hexachlorocycl otriphosphorazide | MEL | melamine |
| TSP | total smoke production | MH | magnesium hydroxide |
| LBL | layer-by-layer self-assembly | PhPCS | phenylphosphorylated CS |
| PhPNCS | phenylphosphoramidated CS | APP | ammonium polyphosphate |
| SA | sodium alginate | KCG | KHPO-modified CG |
| Nch | nano-chitosan | CG | CS/gelatin |
| A-HNTs | amino-modified halloysite nanotubes | H3O+ | hydronium ion |
| PUCS | chitosan-based ammonium phytate | MP | methyl phydroxybenzoate |
| SP | sodium phytate | TEA | triethylamine |
| Fe-MOF | iron–metal–organic framework | HGMs | hollow glass microspheres |
| HEC | hydroxyethyl cellulose | TEPA | tetraethylenepentamine |
| MA | maleic anhydride | MF | melamine formaldehyde |
| BPOD | phenylphosphoryl dichloride | CMC | carboxymethyl cellulose |
| CSTE | bio-based chitosan derivative | PBA | Prussian blue analog |
| CPPA | chitosan-based flame retardants | OCTS | oxidized chitosan |
| ACS | aminated chitosan | HPA | hyperbranched polymer |
| MPP | melamine polyphosphate | ESO | epoxidized soybean oil |
| HCCP | hexachlorocyclotriphosphazene | MACS | acidified chitosan |
| PMPI | poly methyl polyphenyl polyisocyanate | BC | biochar |
| DOPO | 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide | ||
| H-CMPs | conjugated microporous polymer with a hollow structure | ||
| PA-UiO66-NH2 | phytic acid-functionalized metal–organic framework | ||
| FAS-17 | 1H,1H,2H,2H-perfluorodecyltriethoxysilane | ||
| VMT-NSs-NH2 | surface-modified vermiculite nanosheets | ||
| PMPI | polymethylene polyphenyl polyisocyanate | ||
| HCS | hydroxypropyl trimethylammonium chloride chitosan | ||
| HCPCP | hexa-(4-carboxyl-phenoxy)-cyclotriphosphazene | ||
| AEP | epichlorohydrinmodified aramid nanofibers | ||
References
- El-Araby, A.; Janati, W.; Ullah, R.; Ercisli, S.; Errachidi, F. Chitosan, chitosan derivatives, and chitosan-based nanocomposites: Eco-friendly materials for advanced applications (a review). Front. Chem. 2024, 11, 1327426. [Google Scholar] [CrossRef]
- Huo, X.; Li, W.; Wang, Y.; Han, N.; Wang, J.; Wang, N.; Zhang, X. Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation. Carbohydr. Polym. 2018, 200, 602–610. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Y.; Feng, T.; Zhang, Y.; Sun, J.; Wang, X.; Bai, C.; Zhang, X.; Shen, J. Chitosan toughened epoxy resin by chemical cross-linking: Enabling excellent mechanical properties and corrosion resistance. Int. J. Biol. Macromol. 2024, 271, 132565. [Google Scholar] [CrossRef]
- MohammadAlizadeh, A.; Elmi, F. Flame retardant and superoleophilic polydopamine/chitosan-graft (g)-octanal coated polyurethane foam for separation oil/water mixtures. Int. J. Biol. Macromol. 2024, 259, 129237. [Google Scholar] [CrossRef] [PubMed]
- Kołodyńska, D.; Hałas, P.; Franus, M.; Hubicki, Z. Zeolite properties improvement by chitosan modification—Sorption studies. J. Ind. Eng. Chem. 2017, 52, 187–196. [Google Scholar] [CrossRef]
- Dhlamini, K.S.; Selepe, C.T.; Ramalapa, B.; Tshweu, L.; Ray, S.S. Reimagining chitosan-based antimicrobial biomaterials to mitigate antibiotic resistance and alleviate antibiotic overuse: A review. Macromol. Mater. Eng. 2024, 309, 2400018. [Google Scholar] [CrossRef]
- Brahmi, A.; Agsοus, M.; Benkhaoula, B.N.; Ziani, S.; Khireddine, H.; AitAli, S.; Abdullah, M.S.M.; Boon Xian, C.; Belaadi, A. Fluoro-hydroxyapatite/chitosan composites as an eco-friendly adsorbent for direct red 23 dye removal: Optimization through response surface methodology. J. Mol. Struct. 2025, 1321, 140212. [Google Scholar] [CrossRef]
- Iñiguez-Moreno, M.; Hernández-Varela, J.D.; Burelo, M.; Elizondo-Luevano, J.H.; Araújo, R.G.; Treviño-Quintanilla, C.D.; Medina, D.I. Progress in chitosan-based materials: Enhancing edible coatings and films through modifications and functionalization for food preservation. Process Biochem. 2025, 156, 175–190. [Google Scholar] [CrossRef]
- Li, X.; Sánchez del Río Sáez, J.; Liu, Y.; Du, S.; Cruz, C.; Wei, G.; Wang, D.-Y. Carboxymethyl chitosan-based composite film for fire warning under high humidity conditions with wireless signal transmission. Int. J. Biol. Macromol. 2025, 316, 144540. [Google Scholar] [CrossRef]
- Wang, C.; Yu, B.; Zhao, T.; Yang, F.; Chen, M.; Zhu, X.; Cai, Z.; Fu, B. Chitosan cryogels incorporated with phytic acid-modified UiO-66-NH2 for enhanced flame-retardant performance. Carbohydr. Polym. 2025, 353, 123259. [Google Scholar] [CrossRef]
- Lv, P.-Y.; Feng, X.-L.; Shi, Q.; Wan, J.-J.; He, S.-Y.; Kong, D.-M.; Li, Y.; Cao, C.-F.; Gao, J.-F.; Wang, W.; et al. Chitosan-based transparent and flame-retardant bio-composite coatings for wooden materials with rapid fire monitoring response. Constr. Build. Mater. 2025, 491, 142765. [Google Scholar] [CrossRef]
- Fang, N.; Chan, V. Chitosan-induced restructuration of a mica-supported phospholipid bilayer: An atomic force microscopy study. Biomacromolecules 2003, 4, 1596–1604. [Google Scholar] [CrossRef]
- Chen, J.; Huang, W.; Chen, Y.; Zhou, Z.; Liu, H.; Zhang, W.; Huang, J. Facile preparation of chitosan-based composite film with good mechanical strength and flame retardancy. Polymers 2022, 14, 1337. [Google Scholar] [CrossRef]
- Gong, L.; Liu, Y.; Lu, X.; Liu, Z. In-situ polymerization engineered anisotropic biomass fire-resistant aerogels: Triple-functional integration of thermal insulation, mechanical robustness, and fire-warning performance. Polym. Degrad. Stab. 2025, 242, 111703. [Google Scholar] [CrossRef]
- Sun, Y.; Chu, Y.; Deng, C.; Xiao, H.; Wu, W. High-strength and superamphiphobic chitosan-based aerogels for thermal insulation and flame retardant applications. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129663. [Google Scholar] [CrossRef]
- Khodavandegar, S.; Fatehi, P. Fully biobased flame-retardant lignin-incorporated chitosan-derived aerogel. Chem. Eng. J. 2025, 515, 163745. [Google Scholar] [CrossRef]
- An, J.; Ping, X.; Gao, G.; Shen, Q.; Wang, Z.; Zhang, C.; Bu, H.; Lin, Z.; Huang, C. High flame-retardant and thermal insulation performances of sodium-alginate/chitosan aerogel by coating montmorillonite on pore surface. Ceram. Int. 2025, 51, 45510–45521. [Google Scholar] [CrossRef]
- Chen, B.; Lu, H.; Zhu, H.; Huang, Z.; Lai, X.; Li, H.; Zeng, X. Superhydrophobic and flame-retardant chitosan/ammonium polyphosphate/montmorillonite aerogel-based piezoresistive pressure sensor for human motion detection. Sens. Actuators A Phys. 2024, 369, 115135. [Google Scholar] [CrossRef]
- Jia, H.; Cui, H.; Wu, N.; Deng, S.; Wang, F.; Wang, M.; Wang, Z. Fabrication of superior flame-retardant phosphorylated chitosan biobased porous composites reinforced by superhydrophobic silicone interpenetrating crosslinking networks. Carbohydr. Polym. 2025, 347, 122540. [Google Scholar] [CrossRef]
- Makhlouf, G.; Abdelkhalik, A.; Ameen, H. Preparation of highly efficient chitosan-based flame retardant coatings with good antibacterial properties for cotton fabrics. Prog. Org. Coat. 2022, 163, 106627. [Google Scholar] [CrossRef]
- Tang, W.; Qin, Z.; Li, X.; Liu, T.; Cao, X.; Yang, H.; Cao, Z.; Jin, X.; Yuan, P. Eco-friendly flame retardant comprising chitosan-based effectively enhances the flame retardancy of wood with low weight percent gain. Int. J. Biol. Macromol. 2024, 282, 136868. [Google Scholar] [CrossRef]
- Ren, X.; Fan, Z.; Jin, L.; Wu, X.; Wang, H.; Han, S.; Huang, C.; Zhang, Y.; Sun, F. Unleashing the potential of water-insoluble Cu(2+)-crosslinked chitosan nanocomposite film for enhanced antibacterial and flame-retardant properties. Int. J. Biol. Macromol. 2024, 283, 137455. [Google Scholar] [CrossRef]
- Zhao, Q.; Cheng, X.; Kang, J.; Kong, L.; Zhao, X.; He, X.; Li, J. Polyvinyl alcohol flame retardant film based on halloysite nanotubes, chitosan and phytic acid with strong mechanical and anti-ultraviolet properties. Int. J. Biol. Macromol. 2023, 246, 125682. [Google Scholar] [CrossRef]
- Tu, Z.; Ou, H.; Ran, Y.; Xue, H.; Zhu, F. Chitosan-based biopolyelectrolyte complexes intercalated montmorillonite: A strategy for green flame retardant and mechanical reinforcement of polypropylene composites. Int. J. Biol. Macromol. 2024, 277, 134316. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Li, G.; Zhang, H.; Qu, J.; Sun, W.; Liu, L.; Liu, M.; Li, S.; Jiao, C.; Zhao, X.; et al. An eco-friendly flame retardant from chitosan, phytic acid, Fe-MOF endows thermoplastic polyurethane with enhanced fire safety and mechanical property based on hydrogen bond and pi-pi stacking. Int. J. Biol. Macromol. 2025, 310, 143139. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liu, H.; Yan, Q.; Chen, Q.; Hong, M.; Zhou, Z.-X.; Fu, H. Straightforward synthesis of novel chitosan bio-based flame retardants and their application to epoxy resin flame retardancy. Compos. Commun. 2024, 48, 101949. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Y.; Kan, Z.; Yang, Y.; Wang, P.; Chen, Y.; Wei, D.; Lei, H.; Du, G.; Zhang, L. Organic-inorganic hybrid chitosan-based adhesive combined with Cu/ZIF-8 to construct wood composites with flame retardant properties. Int. J. Biol. Macromol. 2025, 320, 145727. [Google Scholar] [CrossRef]
- Kan, Z.; Huang, Y.; Wang, F.; Liu, L.; Wei, D.; Guo, H.; Chen, Y.; Xie, L.; Zhang, L.; Du, G. Low-temperature curing, flame-retardant and water-resistant modified cellulose-chitosan adhesive based on organic-inorganic hybridization. Int. J. Biol. Macromol. 2025, 329, 147835. [Google Scholar] [CrossRef]
- Xiao, Y.; Zheng, Y.; Wang, X.; Chen, Z.; Xu, Z. Preparation of a chitosan-based flame-retardant synergist and its application in flame-retardant polypropylene. J. Appl. Polym. Sci. 2014, 131, 40845. [Google Scholar] [CrossRef]
- Pardeshi, C.V.; Belgamwar, V.S. Controlled synthesis of N,N,N-trimethyl chitosan for modulated bioadhesion and nasal membrane permeability. Int. J. Biol. Macromol. 2016, 82, 933–944. [Google Scholar] [CrossRef]
- Liu, J.; Pu, H.; Liu, S.; Kan, J.; Jin, C. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review. Carbohydr. Polym. 2017, 174, 999–1017. [Google Scholar] [CrossRef]
- Sirvio, J.A.; Kantola, A.M.; Komulainen, S.; Filonenko, S. Aqueous modification of chitosan with itaconic acid to produce strong oxygen barrier film. Biomacromolecules 2021, 22, 2119–2128. [Google Scholar] [CrossRef]
- Cui, X.; Wu, Q.; Sun, J.; Gu, X.; Li, H.; Zhang, S. Preparation of 4-formylphenylboronic modified chitosan and its effects on the flame retardancy of poly(lactic acid). Polym. Degrad. Stab. 2022, 202, 110037. [Google Scholar] [CrossRef]
- Kumar, D.; Gihar, S.; Shrivash, M.K.; Kumar, P.; Kundu, P.P. A review on the synthesis of graft copolymers of chitosan and their potential applications. Int. J. Biol. Macromol. 2020, 163, 2097–2112. [Google Scholar] [CrossRef]
- Wang, P.; He, B.; An, Z.; Xiao, W.; Song, X.; Yan, K.; Zhang, J. Hollow glass microspheres embedded in porous network of chitosan aerogel used for thermal insulation and flame retardant materials. Int. J. Biol. Macromol. 2024, 256, 128329. [Google Scholar] [CrossRef]
- Ma, X.; Wu, N.; Liu, P.; Cui, H. Fabrication of highly efficient phenylphosphorylated chitosan bio-based flame retardants for flammable PLA biomaterial. Carbohydr. Polym. 2022, 287, 119317. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yuan, J.; Ma, L.; Yin, X.; Zhu, Z.; Song, P. Fabrication of anti-dripping and flame-retardant polylactide modified with chitosan derivative/aluminum hypophosphite. Carbohydr. Polym. 2022, 298, 120141. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, J.; Gao, J.; Lin, X.; Zhu, Z. Simple preparation, big effect: Chitosan-based flame retardant towards simultaneous enhancement of flame retardancy, antibacterial, crystallization and mechanical properties of PLA. Int. J. Biol. Macromol. 2025, 303, 140668. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Li, S.; Tsai, L.-C.; Jiang, T.; Ma, N.; Tsai, F.-C. Flame retardant polypropylene with a single molecule intumescent flame retardant based on chitosan. Mater. Today Commun. 2022, 33, 104689. [Google Scholar] [CrossRef]
- Tan, W.; Zuo, C.; Liu, X.; Tian, Y.; Bai, L.; Ren, Y.; Liu, X. Developing flame retardant, smoke suppression and self-healing polyvinyl alcohol composites by dynamic reversible cross-linked chitosan-based macromolecule. Int. J. Biol. Macromol. 2024, 280, 135734. [Google Scholar] [CrossRef]
- Li, P.; Ren, Y.-L.; Xu, Y.-J.; Liu, Y. One-step and multi-functional polyester/cotton fabrics with phosphorylation chitosan: Its flame retardancy, anti-bacteria, hydrophobicity, and flame-retardant mechanism. Prog. Org. Coat. 2025, 203, 109179. [Google Scholar] [CrossRef]
- Xie, L.; Duan, H.; Chen, K.; Qi, D.; Li, J. Bio-based flame retardant coatings for polyester/cotton fabrics with high physical properties using ammonium vinyl phosphonate-grafted chitosan complexes. Int. J. Biol. Macromol. 2024, 279, 135318. [Google Scholar] [CrossRef] [PubMed]
- Patankar, K.C.; Biranje, S.; Pawar, A.; Maiti, S.; Shahid, M.; More, S.; Adivarekar, R.V. Fabrication of chitosan-based finishing agent for flame-retardant, UV-protective, and antibacterial cotton fabrics. Mater. Today Commun. 2022, 33, 104637. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Li, F.; Zhao, J. In-situ polymerized zinc phytate chelated Si-C-P geopolymer hybrid coating constructed by incorporating chitosan oligosaccharide and DOPO for flame-retardant plywood. Constr. Build. Mater. 2023, 397, 132416. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, T.; Zhang, X.; Li, H.; Li, J.; Ran, X.; Wang, P.; Du, G.; Yang, L.; Cao, M. Biomimetic flame retardant adhesive via combining polysiloxane, chitosan and vermiculite nanosheets inspired by nacre and arthropod cuticle. Int. J. Biol. Macromol. 2025, 289, 138870. [Google Scholar] [CrossRef]
- Wu, S.; Ma, S.; Zhang, Q.; Yang, C. A comprehensive review of polyurethane: Properties, applications and future perspectives. Polymer 2025, 327, 128361. [Google Scholar] [CrossRef]
- Huang, B.; Qu, J.; Li, G.; Zhang, H.; Geng, Y.; Liu, L.; Wang, S.; Jiao, C.; Chen, X. Green flame retardant strategy for thermoplastic polyurethanes: Sustainable utilization of oyster shell waste through chitosan extraction combined with phytic acid and Prussian blue. Polym. Degrad. Stab. 2025, 241, 111621. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Chiang, C.-L.; Ke, C.-Y. Fabrication of novel halogen-free flame retardant containing functionalized chitosan from fisheries waste through the sol-gel technology and its fire safety performance in polyurethane resin. Polym. Degrad. Stab. 2025, 231, 111097. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, W.; Lee, S.H.; Lum, W.C.; Du, G.; Ren, Y.; Zhou, X.; Zhang, J. Reactive bio-based flame retardant derived from chitosan, phytic acid, and epoxidized soybean oil for high-performance biodegradable foam. Int. J. Biol. Macromol. 2025, 307, 142137. [Google Scholar] [CrossRef]
- Liu, S.-H.; Kuan, C.-F.; Ke, C.Y.; Shen, M.Y.; Chiang, C.-L. Preparation and properties of bio-based intumescent flame retardant containing chitosan functionalized ammonium polyphosphate for polyurethane. J. Ind. Eng. Chem. 2023, 127, 303–320. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Y.; Yang, X.; Liu, L.; Wang, P.; Kan, Z.; Bi, W.; Xu, K.; Du, G.; Zhang, L. Preparation of multifunctional flame-retardant wood composites by crosslinking chitosan-based polymers with phytic acid functionalized UiO-66-NH2. Ind. Crops Prod. 2024, 218, 118938. [Google Scholar] [CrossRef]
- Agustiany, E.A.; Nawawi, D.S.; Fatriasari, W.; Wahit, M.U.; Vahabi, H.; Kayla, D.S.; Hua, L.S. Mechanical, morphological, thermal, and fire-retardant properties of sustainable chitosan-lignin based bioplastics. Int. J. Biol. Macromol. 2025, 306, 141445. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Jiao, Y.; Wu, W.; Meng, C.; Cui, Y.; Qu, H. Flame retardancy and smoke suppression properties of bio-based chitosan polyelectrolyte flame retardant containing P and N in epoxy resin. Int. J. Biol. Macromol. 2024, 279, 135001. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.; Guan, J.; Yan, Q.; Lei, Z. Organic-inorganic hybrid functionalized chitosan/ammonium polyphosphate (APP): A synergistic strategy for flame-retardant and high-mechanical-strength epoxy thermosets. Int. J. Biol. Macromol. 2025, 309, 142579. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Wu, N.; Ma, X.; Niu, F. Superior intrinsic flame-retardant phosphorylated chitosan aerogel as fully sustainable thermal insulation bio-based material. Polym. Degrad. Stab. 2023, 207, 110213. [Google Scholar] [CrossRef]
- Kolibaba, T.J.; Stevens, D.L.; Pangburn, S.T.; Condassamy, O.; Camus, M.; Grau, E.; Grunlan, J.C. UV-protection from chitosan derivatized lignin multilayer thin film. RSC Adv. 2020, 10, 32959–32965. [Google Scholar] [CrossRef]
- Kundu, C.K.; Wang, X.; Song, L.; Hu, Y. Chitosan-based flame retardant coatings for polyamide 66 textiles: One-pot deposition versus layer-by-layer assembly. Int. J. Biol. Macromol. 2020, 143, 1–10. [Google Scholar] [CrossRef]
- Cheng, X.; Shi, L.; Fan, Z.; Yu, Y.; Liu, R. Bio-based coating of phytic acid, chitosan, and biochar for flame-retardant cotton fabrics. Polym. Degrad. Stab. 2022, 199, 109898. [Google Scholar] [CrossRef]
- Lv, L.-Y.; Cao, C.-F.; Qu, Y.-X.; Zhang, G.-D.; Zhao, L.; Cao, K.; Song, P.; Tang, L.-C. Smart fire-warning materials and sensors: Design principle, performances, and applications. Mater. Sci. Eng. R Rep. 2022, 150, 100690. [Google Scholar] [CrossRef]
- Cao, X.; Huang, Y.; Tian, X.; Ni, Y.; Wang, Y. Facile and atom-economical synthesis of highly efficient chitosan-based flame retardants towards fire-retarding and antibacterial multifunctional coatings on cotton fabrics. Int. J. Biol. Macromol. 2025, 300, 140205. [Google Scholar] [CrossRef]
- Duan, J.; Hou, Y.; Qian, X.; Shi, C.; Wan, M.; Zhu, H.; Wang, H. Multilayer chitosan/silica-coated ammonium polyphosphate flame retardants for enhanced fire resistance of thermoplastic polyurethane. Constr. Build. Mater. 2025, 474, 141120. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, Z.; Cheng, C.; Sun, H.; Li, J.; Jiao, R.; Li, A. Conjugated microporous polymer nanoparticle hollow spheres loaded with DOPO and chitosan with excellent thermal insulation and flame retardant properties. Polym. Degrad. Stab. 2025, 239, 111424. [Google Scholar] [CrossRef]
- Yang, F.; Yuan, B.; Wang, Y.; Chen, X.; Wang, L.; Zhang, H. Graphene oxide/chitosan nano-coating with ultrafast fire-alarm response and flame-retardant property. Polym. Adv. Technol. 2021, 33, 795–806. [Google Scholar] [CrossRef]
- Asasutjarit, R.; Theerachayanan, T.; Kewsuwan, P.; Veeranondha, S.; Fuongfuchat, A.; Ritthidej, G.C. Gamma sterilization of diclofenac sodium loaded- N-trimethyl chitosan nanoparticles for ophthalmic use. Carbohydr. Polym. 2017, 157, 603–612. [Google Scholar] [CrossRef] [PubMed]
- De Silva, R.T.; Mantilaka, M.; Ratnayake, S.P.; Amaratunga, G.A.J.; de Silva, K.M.N. Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohydr. Polym. 2017, 157, 739–747. [Google Scholar] [CrossRef]
- Rehan, M.; El-Naggar, M.E.; Mashaly, H.M.; Wilken, R. Nanocomposites based on chitosan/silver/clay for durable multi-functional properties of cotton fabrics. Carbohydr. Polym. 2018, 182, 29–41. [Google Scholar] [CrossRef]
- do Nascimento Sousa, S.D.; Santiago, R.G.; Soares Maia, D.A.; de Oliveira Silva, E.; Vieira, R.S.; Bastos-Neto, M. Ethylene adsorption on chitosan/zeolite composite films for packaging applications. Food Packag. Shelf Life 2020, 26, 100584. [Google Scholar] [CrossRef]
- Salehi, S.; Alijani, S.; Anbia, M. Enhanced adsorption properties of zirconium modified chitosan-zeolite nanocomposites for vanadium ion removal. Int. J. Biol. Macromol. 2020, 164, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Goda, E.S.; Abu Elella, M.H.; Hong, S.E.; Pandit, B.; Yoon, K.R.; Gamal, H. Smart flame retardant coating containing carboxymethyl chitosan nanoparticles decorated graphene for obtaining multifunctional textiles. Cellulose 2021, 28, 5087–5105. [Google Scholar] [CrossRef]
- Guo, S.; Ren, Y.; Chang, R.; He, Y.; Zhang, D.; Guan, F.; Yao, M. Injectable self-healing adhesive chitosan hydrogel with antioxidative, antibacterial, and hemostatic activities for rapid hemostasis and skin wound healing. ACS Appl. Mater. Interfaces 2022, 14, 34455–34469. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, S.H.; Chuang, W.T.; Dai, N.T.; Hsu, S.H. Biomimetic strain-stiffening in chitosan self-healing hydrogels. ACS Appl. Mater. Interfaces 2022, 14, 16032–16046. [Google Scholar] [CrossRef]
- Oladzadabbasabadi, N.; Mohammadi Nafchi, A.; Ariffin, F.; Wijekoon, M.; Al-Hassan, A.A.; Dheyab, M.A.; Ghasemlou, M. Recent advances in extraction, modification, and application of chitosan in packaging industry. Carbohydr. Polym. 2022, 277, 118876. [Google Scholar] [CrossRef]
- Zhang, M.; Zheng, Y.; Jin, Y.; Wang, D.; Wang, G.; Zhang, X.; Li, Y.; Lee, S. Ag@MOF-loaded p-coumaric acid modified chitosan/chitosan nanoparticle and polyvinyl alcohol/starch bilayer films for food packing applications. Int. J. Biol. Macromol. 2022, 202, 80–90. [Google Scholar] [CrossRef]
- Mahaninia, M.H.; Wang, Z.; Rajabi-Abhari, A.; Yan, N. Self-healing, flame-retardant, and antimicrobial chitosan-based dynamic covalent hydrogels. Int. J. Biol. Macromol. 2023, 252, 126422. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Jiao, W.; Chen, Z.; Wang, C.; Song, X.; Ma, L.; Tang, Z.; Yan, W.; Xie, H.; Yuan, B.; et al. Injectable multifunctional chitosan/dextran-based hydrogel accelerates wound healing in combined radiation and burn injury. Carbohydr. Polym. 2023, 316, 121024. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, C.; Qi, C.; Zhang, D.; Sun, H.; Yang, S.; Wan, Y.; Wang, Y. Enhancement of the corrosion resistance of the PEO-coated 5052 aluminum alloy by the chitosan film: Effects of solvent acids. Prog. Org. Coat. 2024, 192, 108495. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, C.; Liu, Y.; Bai, Y.; Li, X.; Wang, X. Sprayable and self-healing chitosan-based hydrogels for promoting healing of infected wound via anti-bacteria, anti-inflammation and angiogenesis. Carbohydr. Polym. 2024, 337, 122147. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, G.; Yang, F.; Luo, Z.; Yuan, B.; Chen, X.; Wang, L. Serendipity discovery of fire early warning function of chitosan film. Carbohydr. Polym. 2022, 277, 118884. [Google Scholar] [CrossRef]
- Yang, X.-M.; Yin, G.-Z.; Hobson, J.; Zhai, Z.; Zhao, J.; Shentu, B. Schiff base approach to introduce chitosan-phytic acid complex for flame-retardant cotton fabrics. Eur. Polym. J. 2024, 221, 113525. [Google Scholar] [CrossRef]
- Li, P.; Liu, C.; Xu, Y.-J.; Jiang, Z.-M.; Liu, Y.; Zhu, P. Novel and eco-friendly flame-retardant cotton fabrics with lignosulfonate and chitosan through LbL: Flame retardancy, smoke suppression and flame-retardant mechanism. Polym. Degrad. Stab. 2020, 181, 109302. [Google Scholar] [CrossRef]
- Fang, Y.; Sun, W.; Li, J.; Liu, H.; Liu, X. Eco-friendly flame retardant and dripping-resistant of polyester/cotton blend fabrics through layer-by-layer assembly fully bio-based chitosan/phytic acid coating. Int. J. Biol. Macromol. 2021, 175, 140–146. [Google Scholar] [CrossRef]
- Li, X.-L.; Shi, X.-H.; Chen, M.-J.; Liu, Q.-Y.; Li, Y.-M.; Li, Z.; Huang, Y.-H.; Wang, D.-Y. Biomass-based coating from chitosan for cotton fabric with excellent flame retardancy and improved durability. Cellulose 2022, 29, 5289–5303. [Google Scholar] [CrossRef]
- Fang, Y.; Wu, J.; Chen, Y.; Wu, L. Durable flame retardant and anti-dripping of PET fabric using bio-based covalent crosslinking intumescent system of chitosan and phytic acid. Prog. Org. Coat. 2023, 183, 107785. [Google Scholar] [CrossRef]
- Gao, Y.-J.; Li, M.-X.; Cui, M.-L.; Cheng, X.-W.; Wu, C.; Liu, W.; Guan, J.-P. Polyaniline/chitosan coating as the novel and sustainable flame retardant and UV protection route for silk fabric. Prog. Org. Coat. 2024, 186, 108036. [Google Scholar] [CrossRef]
- Huo, Z.; Wu, H.; Song, Q.; Zhou, Z.; Wang, T.; Xie, J.; Qu, H. Synthesis of zinc hydroxystannate/reduced graphene oxide composites using chitosan to improve poly(vinyl chloride) performance. Carbohydr. Polym. 2021, 256, 117575. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Jin, X.; Li, H.; Sun, J.; Gu, X. The novel application of chitosan: Effects of cross-linked chitosan on the fire performance of thermoplastic polyurethane. Carbohydr. Polym. 2018, 189, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.; Fan, K.; Lei, L.; Wang, C.; Baena, J.C.; Okoye, H.; Fam, W.; Zhou, D.; Oliver, S.; Khalid, A.; et al. Fire-resistant flexible polyurethane foams via nature-inspired chitosan-expandable graphite coatings. ACS Appl. Polym. Mater. 2021, 3, 4079–4087. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, J.; Wu, K.; Pan, Z.; Cheng, Q.; Feng, L.; Wu, H.; Zhou, H. Chitosan–Fe(III) complexes via green preparation toward flame retardant and high-mechanical-strength epoxy composites. ACS Sustain. Chem. Eng. 2022, 10, 13453–13464. [Google Scholar] [CrossRef]
- Fu, T.; Guo, D.; Wu, J.; Wang, X.; Wang, X.; Chen, L.; Wang, Y. Inherent flame retardation of semi-aromatic polyesters via binding small-molecule free radicals and charring. Polym. Chem. 2016, 7, 1584–1592. [Google Scholar] [CrossRef]
- Wu, K.; Zhu, K.; Kang, C.; Wu, B.; Huang, Z. An experimental investigation of flame retardant mechanism of hydrated lime in asphalt mastics. Mater. Des. 2016, 103, 223–229. [Google Scholar] [CrossRef]
- Hu, Y.; Ye, Y.; Wang, J.; Zhang, T.; Jiang, S.; Han, X. Functionalization of chitosan and its application in flame retardants: A review. Int. J. Biol. Macromol. 2025, 295, 139615. [Google Scholar] [CrossRef]
- Li, X.; Río Sáez, J.; Du, S.; Díaz, R.; Ao, X.; Wang, D. Bio-based chitosan-based film as a bifunctional fire-warning and humidity sensor. Int. J. Biol. Macromol. 2023, 253, 126466. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Lu, T.; Wang, H.; Zhang, Z.; Lu, S. Phytic acid modified soy protein isolate/chitosan film: A multi-functional and degradable bio-based composite material for fire alarm sensor. Polym. Degrad. Stab. 2023, 216, 110505. [Google Scholar] [CrossRef]
- Wu, R.; Wang, Y.; Liu, Y.; Yuan, B. Functionalizing chitosan-based film with highly sensitive fire response and commendable flame retardancy for intelligent fire-alarm system. Compos. Part A Appl. Sci. Manuf. 2024, 178, 107999. [Google Scholar] [CrossRef]
- Shen, Z.; Fang, Y.; Yuan, B. Chitosan-based films with excellent flame retardancy and highly sensitive fire response for application in self-powered dual fire-alarm systems. Int. J. Biol. Macromol. 2025, 299, 140131. [Google Scholar] [CrossRef] [PubMed]
- Prokhorov, E.; Luna-Bárcenas, G.; González-Campos, J.B.; Kovalenko, Y.; García-Carvajal, Z.Y.; Mota-Morales, J. Proton conductivity and relaxation properties of chitosan-acetate films. Electrochim. Acta 2016, 215, 600–608. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, J.; Ou, M.; Piao, J.; Lian, R.; Cui, J.; Guan, H.; Jiao, C.; Chen, X. Construction of composite self-assembly coating based on chitosan for enhancing the flame-retardant and antibacterial performances of cotton fabric. Int. J. Biol. Macromol. 2024, 275, 133355. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yang, F.; Chen, C.; Qi, Y.; Wei, G.; Li, X.; Pan, Y.-T. Biomass Chitosan-Based Composites for Flame Retardancy and Fire Alarm: Advances and Perspectives. J. Compos. Sci. 2026, 10, 41. https://doi.org/10.3390/jcs10010041
Yang F, Chen C, Qi Y, Wei G, Li X, Pan Y-T. Biomass Chitosan-Based Composites for Flame Retardancy and Fire Alarm: Advances and Perspectives. Journal of Composites Science. 2026; 10(1):41. https://doi.org/10.3390/jcs10010041
Chicago/Turabian StyleYang, Fangyuan, Chuanghui Chen, Yujie Qi, Guoying Wei, Xiaolu Li, and Ye-Tang Pan. 2026. "Biomass Chitosan-Based Composites for Flame Retardancy and Fire Alarm: Advances and Perspectives" Journal of Composites Science 10, no. 1: 41. https://doi.org/10.3390/jcs10010041
APA StyleYang, F., Chen, C., Qi, Y., Wei, G., Li, X., & Pan, Y.-T. (2026). Biomass Chitosan-Based Composites for Flame Retardancy and Fire Alarm: Advances and Perspectives. Journal of Composites Science, 10(1), 41. https://doi.org/10.3390/jcs10010041

