Improvement of Cyclic Stability of High-Capacity Lithium-Ion Battery Si/C Composite Anode Through Cu Current Collector Perforation
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Electrode Materials
2.2. Preparation of Slurries
2.3. Coating of Cathodes and Anodes
2.4. Electrode Cutting
2.5. Electrolyte Preparation
2.6. Cell Assembly
2.7. Peeling Test
2.8. Morphological and Structural Characterization
2.9. Electrochemical Characterization
3. Results
3.1. Morphology and Structure of the Si/C Composite
3.2. Morphology of Perforated Cu Foils
3.3. Morphology of Si/C Anodes
3.4. Electrochemical Performance
4. Discussion
4.1. Morphology and Structure of the Si/C Composite
4.2. Morphology of Perforated Cu Foils
4.3. Electrochemical Performance and Cycling Behavior
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LIB | Lithium-ion batteries |
| SEI | Solid electrolyte interface |
| 3D | Three-dimensional |
| CMC | Carboxymethyl cellulose |
| CNT | Carbon nanotubes |
| SBR | Styrene-butadiene rubber |
| PVDF | Polyvinylidene fluoride |
| FEC | Fluoroethylene carbonate |
| EC | Ethylene carbonate |
| DMC | Dimethyl carbonate |
| EMC | ethyl methyl carbonate |
| NMP | N-methyl-2-pyrrolidone |
| SEM | Scanning electron microscope |
| EDS | Energy-dispersive X-ray spectroscopy |
| XRD | X-ray diffraction |
| BET | Brunauer-Emmett-Teller method |
| CCCV | Constant current-constant voltage |
| CC | Constant-current |
| ICE | Initial Coulombic efficiency |
References
- Zhang, Z.; Wu, Y.; Mo, Z.; Lei, X.; Xie, X.; Xue, X.; Qin, H.; Jiang, H. Research Progress of Silicon-Based Anode Materials for Lithium-Ion Batteries. RSC Adv. 2025, 15, 10731–10753. [Google Scholar] [CrossRef]
- Ramdhiny, M.N.; Jeon, J. Design of Multifunctional Polymeric Binders in Silicon Anodes for Lithium-ion Batteries. Carbon Energy 2024, 6, e356. [Google Scholar] [CrossRef]
- Liu, X.H.; Wang, J.W.; Huang, S.; Fan, F.; Huang, X.; Liu, Y.; Krylyuk, S.; Yoo, J.; Dayeh, S.A.; Davydov, A.V.; et al. In Situ Atomic-Scale Imaging of Electrochemical Lithiation in Silicon. Nat. Nanotechnol. 2012, 7, 749–756. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, C.; Zhu, J.; Xue, B.; Zhang, J.; Jiang, M. An Advanced 3D Crosslinked Conductive Binder for Silicon Anodes: Leveraging Glycerol Chemistry for Superior Lithium-Ion Battery Performance. Angew. Chem. Int. Ed. 2025, 64, e202418794. [Google Scholar] [CrossRef]
- Su, H.; Barragan, A.A.; Geng, L.; Long, D.; Ling, L.; Bozhilov, K.N.; Mangolini, L.; Guo, J. Colloidal Synthesis of Silicon–Carbon Composite Material for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2017, 56, 10780–10785. [Google Scholar] [CrossRef]
- Su, H.; Li, X.; Liu, C.; Shang, Y.; Liu, H. Scalable Synthesis of Micrometer-Sized Porous Silicon/Carbon Composites for High-Stability Lithium-Ion Battery Anodes. Chem. Eng. J. 2023, 451, 138394. [Google Scholar] [CrossRef]
- Toki, G.F.I.; Hossain, M.K.; Rehman, W.U.; Manj, R.Z.A.; Wang, L.; Yang, J. Recent Progress and Challenges in Silicon-Based Anode Materials for Lithium-Ion Batteries. Ind. Chem. Mater. 2024, 2, 226–269. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Z.; Li, Z.; Wang, J.; He, X.; Zhao, H. Rational Electrolyte Design for Interfacial Chemistry Modulation to Enable Long-Term Cycling Si Anode. Adv. Energy Mater. 2023, 13, 2302068. [Google Scholar] [CrossRef]
- Sun, L.; Liu, Y.; Shao, R.; Wu, J.; Jiang, R.; Jin, Z. Recent Progress and Future Perspective on Practical Silicon Anode-Based Lithium Ion Batteries. Energy Storage Mater. 2022, 46, 482–502. [Google Scholar] [CrossRef]
- Hansen, S.; Schütt, A.; Carstensen, J.; Adelung, R. Local Transmittance Measurements as Large Area Diagnostic Tool for the Optimization of Porous Si Foils for Li-Ion Battery Anodes. J. Electrochem. Soc. 2016, 163, A3036–A3045. [Google Scholar] [CrossRef]
- Luais, E.; Sakai, J.; Desplobain, S.; Gautier, G.; Tran-Van, F.; Ghamouss, F. Thin and Flexible Silicon Anode Based on Integrated Macroporous Silicon Film onto Electrodeposited Copper Current Collector. J. Power Sources 2013, 242, 166–170. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, S.; Qiu, X.; Zhu, W.; Chen, L. Preparation and Characterization of Silicon-Based Three-Dimensional Cellular Anode for Lithium Ion Battery. Electrochem. Commun. 2007, 9, 930–934. [Google Scholar] [CrossRef]
- Zhang, H.; Braun, P.V. Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes. Nano Lett. 2012, 12, 2778–2783. [Google Scholar] [CrossRef]
- Tzeng, Y.; Jhan, C.-Y.; Chiu, K.-M.; Wu, Y.-C.; Chen, G.-Y.; Wang, P.-S. Si–Ni-Alloy-Assisted Very High-Areal-Capacity Silicon-Based Anode on Ni Foam for Lithium Ion Battery. Mater. Today Chem. 2023, 30, 101570. [Google Scholar] [CrossRef]
- Xue, W.; Tian, X.; Xue, Y.; Peng, T.; Li, Y.; Li, Y.; Sun, J. Effect of Collector Roughness on Properties of Amorphous Silicon Thin-Film Anodes. ChemElectroChem 2019, 6, 3039–3042. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, Z.; Zhang, H.; Fu, H.; Li, H.; Wang, A.; Zhang, H.; Hu, Z. Improved Electrochemical Performance of the Silicon/Graphite-Tin Composite Anode Material by Modifying the Surface Morphology of the Cu Current Collector. Electrochim. Acta 2014, 146, 322–327. [Google Scholar] [CrossRef]
- Wang, C.; Wu, L.; Hong, Y.; Zhang, Y.; Wang, S.; Zhou, G.; Wen, Z.; He, W.; Han, H.; Xu, Y. Preventing Anode Degradation through Copper Foil Surface Modification Techniques for Lithium-Ion Batteries. Surf. Interfaces 2025, 72, 107240. [Google Scholar] [CrossRef]
- Wang, J.; Cao, L.; Li, S.; Xu, J.; Xiao, R.; Huang, T. Effect of Laser-Textured Cu Foil with Deep Ablation on Si Anode Performance in Li-Ion Batteries. Nanomaterials 2023, 13, 2534. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Liu, W.; Ye, B.; Tang, Y. Preparation of Current Collector with Blind Holes and Enhanced Cycle Performance of Silicon-Based Anode. Trans. Nonferrous Met. Soc. China 2013, 23, 1723–1727. [Google Scholar] [CrossRef]
- Zou, Q.; Nie, J.; Lu, B.; Bao, Y.; Song, Y.; Zhang, J. Enhancing the Capacity and Cycling Performance of Lithium Ion Batteries Through Perforated Current Collectors. Acta Mech. Solida Sin. 2025, 38, 539–548. [Google Scholar] [CrossRef]
- Fu, D.; Zhao, Y.; Wang, Z.; Li, M.; Huang, L.; Long, L.; Wang, S.; Tan, B. Investigation on the Application of Microporous Current Collector in Ultra-Fast Lithium-Ion Full Battery. Ind. Eng. Chem. Res. 2024, 63, 7103–7113. [Google Scholar] [CrossRef]
- Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General Features. Z. Krist.-Cryst. Mater. 2014, 229, 345–352. [Google Scholar] [CrossRef]
- Zhou, C.G.; Yu, Q.H. Nanostructured Thermal Barrier Coatings. In Thermal Barrier Coatings; Woodhead Publishing Limited: Cambridge, UK, 2011; pp. 75–96. ISBN 978-1-84569-658-0. [Google Scholar]
- Obrovac, M.N.; Chevrier, V.L. Alloy Negative Electrodes for Li-Ion Batteries. Chem. Rev. 2014, 114, 11444–11502. [Google Scholar] [CrossRef]
- Xu, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014, 114, 11503–11618. [Google Scholar] [CrossRef]
- Domi, Y.; Usui, H.; Sugimoto, K.; Sakaguchi, H. Effect of Silicon Crystallite Size on Its Electrochemical Performance for Lithium-Ion Batteries. Energy Technol. 2019, 7, 1800946. [Google Scholar] [CrossRef]
- Wu, F.; Dong, Y.; Su, Y.; Wei, C.; Chen, T.; Yan, W.; Ma, S.; Ma, L.; Wang, B.; Chen, L.; et al. Benchmarking the Effect of Particle Size on Silicon Anode Materials for Lithium-Ion Batteries. Small 2023, 19, 2301301. [Google Scholar] [CrossRef]
- Li, Q.; Sun, X.; Zhao, W.; Hou, X.; Zhang, Y.; Zhao, F.; Li, X.; Mei, X. Processing of a Large-Scale Microporous Group on Copper Foil Current Collectors for Lithium Batteries Using Femtosecond Laser. Adv. Eng. Mater. 2020, 22, 2000710. [Google Scholar] [CrossRef]
- Feyzi, E.; M R, A.K.; Li, X.; Deng, S.; Nanda, J.; Zaghib, K. A Comprehensive Review of Silicon Anodes for High-Energy Lithium-Ion Batteries: Challenges, Latest Developments, and Perspectives. Next Energy 2024, 5, 100176. [Google Scholar] [CrossRef]
- Xie, J.; Tong, L.; Su, L.; Xu, Y.; Wang, L.; Wang, Y. Core-Shell Yolk-Shell Si@C@Void@C Nanohybrids as Advanced Lithium Ion Battery Anodes with Good Electronic Conductivity and Corrosion Resistance. J. Power Sources 2017, 342, 529–536. [Google Scholar] [CrossRef]
- Chang, W.J.; Lee, G.H.; Cheon, Y.J.; Kim, J.T.; Lee, S.I.; Kim, J.; Kim, M.; Park, W.I.; Lee, Y.J. Direct Observation of Carboxymethyl Cellulose and Styrene–Butadiene Rubber Binder Distribution in Practical Graphite Anodes for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 41330–41337. [Google Scholar] [CrossRef]
- Liu, X.H.; Zheng, H.; Zhong, L.; Huang, S.; Karki, K.; Zhang, L.Q.; Liu, Y.; Kushima, A.; Liang, W.T.; Wang, J.W.; et al. Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation. Nano Lett. 2011, 11, 3312–3318. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Xu, J. Cracks of Silicon Nanoparticles in Anodes: Mechanics–Electrochemical-Coupled Modeling Framework Based on the Phase-Field Method. ACS Appl. Energy Mater. 2020, 3, 10931–10939. [Google Scholar] [CrossRef]






| Foil ID | Hole Size, µm | Hole Arrangement | Normalized Weight, g cm−1 | Normalized Surface, mm2 cm−2 | N of Holes per cm2 | Normalized Conductivity |
|---|---|---|---|---|---|---|
| Plain | – | – | 0.0072(2) | 2000 | 0 | 1.00 |
| Perf-250 | 250 | square | 0.0068(8) | 1.818 | 200 | 0.87 |
| Perf-500 | 500 | square | 0.0062(2) | 1.679 | 88.8 | 0.81 |
| Perf-1000 | 1000 | triangular | 0.0048(8) | 1.210 | 53.9 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Isokjanov, S.S.; Gilmanov, A.B.; Vlasova, Y.S.; Komayko, A.I.; Karakulina, O.M.; Krivetskiy, V.V. Improvement of Cyclic Stability of High-Capacity Lithium-Ion Battery Si/C Composite Anode Through Cu Current Collector Perforation. J. Compos. Sci. 2026, 10, 11. https://doi.org/10.3390/jcs10010011
Isokjanov SS, Gilmanov AB, Vlasova YS, Komayko AI, Karakulina OM, Krivetskiy VV. Improvement of Cyclic Stability of High-Capacity Lithium-Ion Battery Si/C Composite Anode Through Cu Current Collector Perforation. Journal of Composites Science. 2026; 10(1):11. https://doi.org/10.3390/jcs10010011
Chicago/Turabian StyleIsokjanov, Shakhboz Sh., Ainur B. Gilmanov, Yulia S. Vlasova, Alena I. Komayko, Olesia M. Karakulina, and Valeriy V. Krivetskiy. 2026. "Improvement of Cyclic Stability of High-Capacity Lithium-Ion Battery Si/C Composite Anode Through Cu Current Collector Perforation" Journal of Composites Science 10, no. 1: 11. https://doi.org/10.3390/jcs10010011
APA StyleIsokjanov, S. S., Gilmanov, A. B., Vlasova, Y. S., Komayko, A. I., Karakulina, O. M., & Krivetskiy, V. V. (2026). Improvement of Cyclic Stability of High-Capacity Lithium-Ion Battery Si/C Composite Anode Through Cu Current Collector Perforation. Journal of Composites Science, 10(1), 11. https://doi.org/10.3390/jcs10010011

