Thread Quality Control in High-Speed Tapping Cycles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thread Quality
2.2. Experimental Layout and Signal
2.3. Statistical Control Strategy
2.3.1. Principal Component Analysis
2.3.2. Statistical Control Process
2.3.3. Thread Quality Approach
3. Results
3.1. Experimental Results
3.2. PCA Results
3.3. Thread Quality Control Charts
3.3.1. Steam Treatment
3.3.2. AlCrN Coating
3.3.3. TiCN Coating
4. Discussion
5. Conclusions
- The approach works without sensor because it feeds on internal signals from the CNC machine drive control.
- The system provides a unique threshold by each tap supplying to the strategy a huge versatility independent of tool life and different coatings or treatments.
- The process safety is guaranteed because it could be working work self-governance and without sculpting a defective screw. Also, the tool life is only reduced by an average of 10%.
- This self-governance will reduce the high industrial costs and times because there will never be a manual inspection.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Acronyms
Abbreviation | Definition |
CLM | Closed-Loop Manufacturing |
ISO | International Standards Organization |
CFRP | Carbon Fiber Reinforced Polymer |
WEDM | Wire Electrical Discharge Machining |
PCA | Principal Component Analysis |
SPC | Statistical Control Process |
CNC | Computer Numerical Control |
HSS | High-Speed Steel |
PVD | Physical Vapor Deposition |
TiCN | Titanium Carbon Nitride |
AlCrN | Aluminum Chromo Nitride |
DAQ | Data Acquisition |
PC | Personal Computer |
A | Area |
RP | Reference Plane |
SP | Stop Plane |
GV | Generalized Variance |
UCL | Upper Control Limit |
References
- Ahn, J.H.; Lee, D.J.; Kim, S.H.; Cho, K.K. Effects of Synchronizing Errors in Cutting Performance in the Ultrahigh- Speed Tapping. CIRP Ann. Manuf. Technol. 2003, 52, 53–56. [Google Scholar] [CrossRef]
- Agapiou, J.S. Evaluation of the effect of high speed machining on tapping. J. Eng. Ind. 1994, 116, 457–462. [Google Scholar] [CrossRef]
- Mezentsev, O.A.; DeVor, R.E.; Kapoor, S.G. Prediction of Thread Quality by Detection and Estimation of Tapping Faults. J. Manuf. Sci. Eng. 2002, 124, 643–650. [Google Scholar] [CrossRef]
- Fernández Landeta, J.; Fernández Valdivielso, A.; López de Lacalle, L.N.; Girot, F.; Pérez Pérez, J.M. Wear of form taps in threading of steel cold forged parts. J. Manuf. Sci. Eng. 2015, 137. [Google Scholar] [CrossRef]
- Elosegui, I.; Alonso, U.; Lopez de Lacalle, L.N. PVD coatings for thread tapping of austempered ductile iron. Int. J. Adv. Manuf. Technol. 2017, 91, 2663–2672. [Google Scholar] [CrossRef]
- Gil Del Val, A.; Diéguez, P.M.; Arizmendi, M.; Estrems, M. Experimental study of tapping wear mechanisms on nodular cast iron. Procedia Eng. 2015, 132, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Zawada-Tomkiewicz, A.; Wierucka, I. A case study in technological quality assurance of a metric screw thread. Measurement 2018, 114, 208–2017. [Google Scholar] [CrossRef]
- De Freitas, S.A.; Vieira, J.T.; Filho, S.L.M.R.; Cardoso, L. Experimental investigation of tapping in CFRP with analysis of torque-tension resistance. Int. J. Adv. Manuf. Technol. 2019, 104, 757–766. [Google Scholar] [CrossRef]
- Monka, P.; Monkova, K.; Modrak, V.; Hric, S.; Pastucha, P. Study of a tap failure at the internal threads machining. Eng. Fail. Anal. 2019, 100, 25–30. [Google Scholar] [CrossRef]
- Chen, Y.B.; Sha, J.L.; Wu, S.M. Diagnosis of tapping process by information measure and probability voting approach. J. Ind. Eng. 1990, 112, 319–325. [Google Scholar] [CrossRef]
- Liu, T.I.; Ko, E.J.; Sha, S.L. Diagnosis of Tapping Operations Using an AI Approach. J. Mater. Shap. Technol. 1991, 9, 39–46. [Google Scholar] [CrossRef]
- Li, W.; Li, D.; Ni, J. Diagnosis of tapping process using spindle motor current. Int. J. Mach. Tools Manuf. 2002, 43, 73–79. [Google Scholar] [CrossRef]
- Liu, T.-I.; Lee, J.; Liu, G.; Wu, Z. Monitoring and diagnosis of the tapping process for product quality and automated manufacturing. Int. J. Adv. Manuf. Technol. 2013, 64, 1169–1175. [Google Scholar] [CrossRef]
- Bustillo, A.; López de Lacalle, L.N.; Fernández-Valdivielso, A.; Santos, P. Data-mining modeling for the prediction of wear on forming-taps in the threading of steel components. J. Comput. Des. Eng. 2016, 3, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Oezkaya, E.; Biermann, D. Development of a geometrical torque prediction method (GTPM) to automatically determine the relative torque for different tapping tools and diameters. Int. J. Adv. Manuf. Technol. 2018, 97, 1465–1479. [Google Scholar] [CrossRef]
- Lorentz, G. Principal component analysis in technology. Ann. CIRP 1989, 38, 107–109. [Google Scholar] [CrossRef]
- Ming, J.; Tsung, F. A chart allocation strategy for multistage processes. IIE Trans. 2009, 41, 790–803. [Google Scholar]
- Ming, J.; Li, Y.; Tsung, F. Chart allocation strategy for serial-parallel multistage manufacturing processes. IIE Trans. 2010, 42, 577–588. [Google Scholar]
- Oppermann, M.; Sauer, W.; Wohlrabe, H. Optimization of inspection strategies by use of quality cost models and SPC. In Proceedings of the 24th International Spring Seminar on Electronics Technology: Concurrent Engineering in Electronic Packaging, Conference Proceedings, Calimanesti-Caciulata, Romania, 5–9 May 2001; pp. 293–297. [Google Scholar]
- Gil Del Val, A.; Fernández, J.; del Castillo, E.; Arizmendi, M.; Veiga, F. Monitoring of thread quality when tapping nodular cast iron with TiN-coated HSS cutting taps. Int. J. Adv. Manuf. Technol. 2013, 69, 1273–1282. [Google Scholar] [CrossRef]
- Jackson, J.E. A User’s Guide to Principal Components, 10th ed.; John Wiley & Sons: New York, NY, USA, 1991. [Google Scholar]
- Montgomery, D.C. Introduction to Statistical Quality Control, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
Tap | Coating | Alarm |
---|---|---|
1 | steam | 174 |
2 | steam | 242 |
3 | steam | 232 |
4 | AlCrN | 283 |
5 | AlCrN | 409 |
6 | AlCrN | 204 |
7 | TiCN | 158 |
8 | TiCN | 285 |
9 | TiCN | 281 |
Tap | Unacceptable Thread | Penalty (%) |
---|---|---|
1 | 190 | 8 |
2 | 260 | 7 |
3 | 260 | 10 |
4 | 300 | 6 |
5 | 450 | 9 |
6 | 240 | 15 |
7 | 170 | 7 |
8 | 340 | 16 |
9 | 320 | 12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil Del Val, A.; Veiga, F.; Suárez, A.; Arizmendi, M. Thread Quality Control in High-Speed Tapping Cycles. J. Manuf. Mater. Process. 2020, 4, 9. https://doi.org/10.3390/jmmp4010009
Gil Del Val A, Veiga F, Suárez A, Arizmendi M. Thread Quality Control in High-Speed Tapping Cycles. Journal of Manufacturing and Materials Processing. 2020; 4(1):9. https://doi.org/10.3390/jmmp4010009
Chicago/Turabian StyleGil Del Val, Alain, Fernando Veiga, Alfredo Suárez, and Mikel Arizmendi. 2020. "Thread Quality Control in High-Speed Tapping Cycles" Journal of Manufacturing and Materials Processing 4, no. 1: 9. https://doi.org/10.3390/jmmp4010009
APA StyleGil Del Val, A., Veiga, F., Suárez, A., & Arizmendi, M. (2020). Thread Quality Control in High-Speed Tapping Cycles. Journal of Manufacturing and Materials Processing, 4(1), 9. https://doi.org/10.3390/jmmp4010009