Next Article in Journal
Micromagnetic Analysis of Thermally Induced Influences on Surface Integrity Using the Burning Limit Approach
Previous Article in Journal
Anti-Friction and Anti-Wear Mechanisms of Micro Textures and Optimal Area Proportion in the End Milling of Ti6Al4V Alloy
Article

A Scale-up of Energy-Cycle Analysis on Processing Non-Woven Flax/PLA Tape and Triaxial Glass Fibre Fabric for Composites

1
School of Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
2
Department of Design and Engineering, Faculty of Science and Technology, Bournemouth University, Bournemouth BH12 5BB, UK
3
School of Mechanical and Design Engineering, Faculty of Technology, University of Portsmouth, Portsmouth PO1 3DJ, UK
*
Author to whom correspondence should be addressed.
J. Manuf. Mater. Process. 2019, 3(4), 92; https://doi.org/10.3390/jmmp3040092
Received: 28 August 2019 / Revised: 8 October 2019 / Accepted: 23 October 2019 / Published: 1 November 2019
In the drive towards a sustainable bio-economy, a growing interest exists in the development of composite materials using renewable natural resources. This paper explores the life cycle assessment of processing of Flax fibre reinforced polylactic acid (PLA), with a comparison of glass fibre triaxial fabric in the production process. The use of hydrocarbon fossil resources and synthetic fibres, such as glass and carbon, have caused severe environmental impacts in their entire life cycles. Whereas, Flax/PLA is one of the cornerstones for the sustainable economic growth of natural fibre composites. In this study, the manufacturing processes for the production of Flax/PLA tape and triaxial glass fibre were evaluated through a gate-to-gate life cycle assessment (LCA). The assessment was based on an input-output model to estimate energy demand and environmental impacts. The quality of the natural hybrid composite produced and cost-effectiveness of their LCA was dependent on their roving processing speeds and temperature applied to both the Flax/PLA tape and triaxial glass fabrics during processing. The optimum processing condition was found to be at a maximum of 4 m/min at a constant temperature of 170 °C. In contrast, the optimum for normal triaxial glass fibre production was at a slower speed of 1 m/min using a roving glass fibre laminating machine. The results showed that when the Flax and PLA were combined to produce new composite material in the form of a flax/PLA tape, energy consumption was 0.25 MJ/kg, which is lower than the 0.8 MJ/kg used for glass fibre fabric process. Flax/PLA tape and glass fibre fabric composites have a carbon footprint equivalent to 0.036 kg CO2 and 0.11 kg CO2, respectively, under the same manufacturing conditions. These are within the technical requirements in the composites industry. The manufacturing process adopted to transform Flax/PLA into a similar tape composite was considerably quicker than that of woven glass fibre fabric for composite tape. This work elucidated the relationship of the energy consumptions of the two materials processes by using a standard LCA analytical methodology. The outcomes supported an alternative option for replacement of some conventional composite materials for the automotive industry. Most importantly, the natural fibre composite production is shown to result in an economic benefit and reduced environmental impact. View Full-Text
Keywords: Flax fibre; polylactic acid (PLA); renewable raw materials; triaxial glass fibre; energy consumption; carbon footprint; life cycle assessment (LCA) Flax fibre; polylactic acid (PLA); renewable raw materials; triaxial glass fibre; energy consumption; carbon footprint; life cycle assessment (LCA)
Show Figures

Figure 1

MDPI and ACS Style

Tchana Toffe, G.; Oluwarotimi Ismail, S.; Montalvão, D.; Knight, J.; Ren, G. A Scale-up of Energy-Cycle Analysis on Processing Non-Woven Flax/PLA Tape and Triaxial Glass Fibre Fabric for Composites. J. Manuf. Mater. Process. 2019, 3, 92. https://doi.org/10.3390/jmmp3040092

AMA Style

Tchana Toffe G, Oluwarotimi Ismail S, Montalvão D, Knight J, Ren G. A Scale-up of Energy-Cycle Analysis on Processing Non-Woven Flax/PLA Tape and Triaxial Glass Fibre Fabric for Composites. Journal of Manufacturing and Materials Processing. 2019; 3(4):92. https://doi.org/10.3390/jmmp3040092

Chicago/Turabian Style

Tchana Toffe, Gilles, Sikiru Oluwarotimi Ismail, Diogo Montalvão, Jason Knight, and Guogang Ren. 2019. "A Scale-up of Energy-Cycle Analysis on Processing Non-Woven Flax/PLA Tape and Triaxial Glass Fibre Fabric for Composites" Journal of Manufacturing and Materials Processing 3, no. 4: 92. https://doi.org/10.3390/jmmp3040092

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop