Improving Shielding Gas Flow Distribution to Enhance Quality and Consistency in Metal Laser Powder Bed Fusion Processes
Abstract
1. Introduction
2. Materials and Methods
2.1. Chamber Modifications
2.2. Beam Measurements
2.3. Plate Scans
2.4. Fabrication of Qualification Test Artifact
2.5. Analysis of Qualification Test Artifact
3. Results and Discussion
3.1. Flow Field Characteristics
3.2. Laser Beam Characteristics
3.3. Plate Scan Results
3.3.1. OEM vs. MOD—Plates B, H & M
3.3.2. OEM vs. MOD—First Row
3.4. Artifact Results
3.4.1. Microstructure Analysis
3.4.2. Porosity Analysis
3.4.3. Mechanical Testing Results
3.5. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PBF-LB/M | Metal Laser Powder Bed Fusion |
| AMMT | Additive Manufacturing Metrology Testbed |
| MRV | Magnetic Resonance Velocimetry |
| XCT | X-Ray Computed Tomography |
References
- Qin, Y.; Liu, J.; Chen, Y.; Wen, P.; Zheng, Y.; Tian, Y.; Voshage, M.; Schleifenbaum, J.H. Influence of Laser Energy Input and Shielding Gas Flow on Evaporation Fume during Laser Powder Bed Fusion of Zn Metal. Materials 2021, 14, 2677. [Google Scholar] [CrossRef]
- Hoppe, B.; Enk, S.; Schleifenbaum, J.H. Analysis of the Shielding Gas Dependent L-PBF Process Stability by Means of Schlieren and Shadowgraph Techniques; University of Texas at Austin: Austin, TX, USA, 2019. [Google Scholar] [CrossRef]
- Bitharas, I.; Burton, A.; Ross, A.J.; Moore, A.J. Visualisation and numerical analysis of laser powder bed fusion under cross-flow. Addit. Manuf. 2021, 37, 101690. [Google Scholar] [CrossRef]
- Ladewig, A.; Schlick, G.; Fisser, M.; Schulze, V.; Glatzel, U. Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process. Addit. Manuf. 2016, 10, 1–9. [Google Scholar] [CrossRef]
- Shen, H.; Rometsch, P.; Wu, X.; Huang, A. Influence of Gas Flow Speed on Laser Plume Attenuation and Powder Bed Particle Pickup in Laser Powder Bed Fusion. JOM 2020, 72, 1039–1051. [Google Scholar] [CrossRef]
- Ferrar, B.; Mullen, L.; Jones, E.; Stamp, R.; Sutcliffe, C.J. Gas flow effects on selective laser melting (SLM) manufacturing performance. J. Mater. Process. Technol. 2012, 212, 355–364. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.; Liu, Z.; Wang, H.; Zhang, Y.; Wang, D. Influence of shielding gas flow consistency on parts quality consistency during large-scale laser powder bed fusion. Opt. Laser Technol. 2023, 158, 108899. [Google Scholar] [CrossRef]
- Weaver, J.; Schlenoff, A.; Deisenroth, D.; Moylan, S. Assessing the influence of non-uniform gas speed on the melt pool depth in laser powder bed fusion additive manufacturing. Rapid Prototy. J. 2023, 29, 1580–1591. [Google Scholar] [CrossRef]
- Baehr, S.; Klecker, T.; Pielmeier, S.; Ammann, T.; Zaeh, M.F. Experimental and analytical investigations of the removal of spatters by various process gases during the powder bed fusion of metals using a laser beam. Prog. Addit. Manuf. 2024, 9, 905–917. [Google Scholar] [CrossRef]
- Tian, X.; Zhong, J.; Yang, Y.; Zhang, C.; Zhao, L. Enhancing the spatter-removal rate in laser powder-bed fusion using a gas-intake system with dual inlets. J. Zhejiang Univ.-Sci. A 2025, 26, 252–265. [Google Scholar] [CrossRef]
- Reijonen, J.; Revuelta, A.; Riipinen, T.; Ruusuvuori, K.; Puukko, P. On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing. Addit. Manuf. 2020, 32, 101030. [Google Scholar] [CrossRef]
- Bitharas, I.; Parab, N.; Zhao, C.; Sun, T.; Rollett, A.D.; Moore, A.J. The interplay between vapour, liquid, and solid phases in laser powder bed fusion. Nat. Commun. 2022, 13, 2959. [Google Scholar] [CrossRef] [PubMed]
- Baehr, S.; Melzig, L.; Bauer, D.; Ammann, T.; Zaeh, M.F. Investigations of process by-products by means of Schlieren imaging during the powder bed fusion of metals using a laser beam. J. Laser Appl. 2022, 34, 042045. [Google Scholar] [CrossRef]
- Deisenroth, D.C.; Neira, J.; Weaver, J.; Yeung, H. Effects of Shield Gas Flow on Meltpool Variability and Signature in Scanned Laser Melting. In Volume 1: Additive Manufacturing; Advanced Materials Manufacturing; Biomanufacturing; Life Cycle Engineering; Manufacturing Equipment and Automation, Virtual, 3 September 2020; American Society of Mechanical Engineers: New York, NY, USA, 2020; p. V001T01A017. [Google Scholar] [CrossRef]
- Zou, J.; Yang, W.; Wu, S.; He, Y.; Xiao, R. Effect of plume on weld penetration during high-power fiber laser welding. J. Laser Appl. 2016, 28, 022003. [Google Scholar] [CrossRef]
- Ding, R.; Yao, J.; Du, B.; Li, K.; Li, T.; Zhao, L.; Guo, Y. Effect of Shielding Gas Volume Flow on the Consistency of Microstructure and Tensile Properties of 316L Manufactured by Selective Laser Melting. Metals 2021, 11, 205. [Google Scholar] [CrossRef]
- Brown, B.; Lough, C.; Wilson, D.; Newkirk, J.; Liou, F. Atmosphere Effects in Laser Powder Bed Fusion: A Review. Materials 2024, 17, 5549. [Google Scholar] [CrossRef]
- PCobbinah, V.; Nzeukou, R.A.; Onawale, O.T.; Matizamhuka, W.R. Laser Powder Bed Fusion of Potential Superalloys: A Review. Metals 2020, 11, 58. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Yin, J.; Li, Y.; Nie, Z.; Li, X.; You, D.; Guan, K.; Duan, W.; Cao, L.; et al. A Review of Spatter in Laser Powder Bed Fusion Additive Manufacturing: In Situ Detection, Generation, Effects, and Countermeasures. Micromachines 2022, 13, 1366. [Google Scholar] [CrossRef]
- O’Brien, N.; Uddin, S.Z.; Weaver, J.; Jones, J.; Singh, S.; Beuth, J. Computational analysis and experiments of spatter transport in a laser powder bed fusion machine. Addit. Manuf. 2024, 84, 104133. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, B.; Tuffile, C. Simulation study of the spatter removal process and optimization design of gas flow system in laser powder bed fusion. Addit. Manuf. 2020, 32, 101049. [Google Scholar] [CrossRef]
- Pauzon, C.; Hryha, E.; Forêt, P.; Nyborg, L. Effect of argon and nitrogen atmospheres on the properties of stainless steel 316 L parts produced by laser-powder bed fusion. Mater. Des. 2019, 179, 107873. [Google Scholar] [CrossRef]
- Pauzon, C.; Forêt, P.; Hryha, E.; Arunprasad, T.; Nyborg, L. Argon-helium mixtures as Laser-Powder Bed Fusion atmospheres: Towards increased build rate of Ti-6Al-4V. J. Mater. Process. Technol. 2020, 279, 116555. [Google Scholar] [CrossRef]
- Bidare, P.; Bitharas, I.; Ward, R.M.; Attallah, M.M.; Moore, A.J. Fluid and particle dynamics in laser powder bed fusion. Acta Mater. 2018, 142, 107–120. [Google Scholar] [CrossRef]
- Gunenthiram, V.; Peyre, P.; Schneider, M.; Dal, M.; Coste, F.; Koutiri, I.; Fabbro, R. Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process. J. Mater. Process. Technol. 2018, 251, 376–386. [Google Scholar] [CrossRef]
- Moran, T.P.; Warner, D.H.; Soltani-Tehrani, A.; Shamsaei, N.; Phan, N. Spatial inhomogeneity of build defects across the build plate in laser powder bed fusion. Addit. Manuf. 2021, 47, 102333. [Google Scholar] [CrossRef]
- Elkins, C.J.; Mireles, J.; Estrada, H.H.; Morgan, D.W.; Taylor, H.C.; Wicker, R.B. Resolving the three-dimensional flow field within commercial metal additive manufacturing machines: Application of experimental Magnetic Resonance Velocimetry. Addit. Manuf. 2023, 73, 103651. [Google Scholar] [CrossRef]
- Reijonen, J. Sources of Variability in Metal Additive Manufacturing: Effects of Machine Architecture-Defined Process Parameters in PBF-LB AM; University of Turku: Turku, Finland, 2025. [Google Scholar]
- Abeyta, A.; Nouwens, C.; Jones, A.M.; Haworth, T.A.; Montelione, A.; Ramulu, M.; Arola, D. Characterizing gas flow in the build chamber of laser powder bed fusion systems utilizing particle image velocimetry: A path to improvements. Addit. Manuf. 2025, 106, 104810. [Google Scholar] [CrossRef]
- Kjer, M.B.; Pan, Z.; Nadimpalli, V.K.; Pedersen, D.B. Experimental Analysis and Spatial Component Impact of the Inert Cross Flow in Open-Architecture Laser Powder Bed Fusion. J. Manuf. Mater. Process. 2023, 7, 143. [Google Scholar] [CrossRef]
- Chen, J.; Wang, R.; Li, X. Numerical and experimental observations of the flow field inside a selective laser melting (SLM) chamber. Int. J. Heat Mass Transf. 2020, 151, 119330. [Google Scholar] [CrossRef]
- Gordon, J.V.; Narra, S.P.; Cunningham, R.W.; Liu, H.; Chen, H.; Suter, R.M.; Beuth, J.L.; Rollett, A.D. Defect structure process maps for laser powder bed fusion additive manufacturing. Addit. Manuf. 2020, 36, 101552. [Google Scholar] [CrossRef]
- Agrawal, A.K.; Rankouhi, B.; Thoma, D.J. Predictive process mapping for laser powder bed fusion: A review of existing analytical solutions. Curr. Opin. Solid State Mater. Sci. 2022, 26, 101024. [Google Scholar] [CrossRef]
- Taylor, H.C.; Garibay, E.A.; Wicker, R.B. Toward a common laser powder bed fusion qualification test artifact. Addit. Manuf. 2021, 39, 101803. [Google Scholar] [CrossRef]
- Taylor, H.C.; Wicker, R.B. Impacts of microsecond control in laser powder bed fusion processing. Addit. Manuf. 2022, 60, 103239. [Google Scholar] [CrossRef]
- Singh, J.; Oliveira, J.P.; Taylor, H.; Mireles, J.; Wicker, R. A holistic approach for evaluation of Gaussian versus ring beam processing on structure and properties in laser powder bed fusion. J. Mater. Process. Technol. 2024, 325, 118293. [Google Scholar] [CrossRef]
- Antikainen, A.; Reijonen, J.; Lagerbom, J.; Lindroos, M.; Pinomaa, T.; Lindroos, T. Single-Track Laser Scanning as a Method for Evaluating Printability: The Effect of Substrate Heat Treatment on Melt Pool Geometry and Cracking in Medium Carbon Tool Steel. J. Mater. Eng. Perform. 2022, 31, 8418–8432. [Google Scholar] [CrossRef]
- Hosseini, E.; Scheel, P.; Müller, O.; Molinaro, R.; Mishra, S. Single-track thermal analysis of laser powder bed fusion process: Parametric solution through physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 2023, 410, 116019. [Google Scholar] [CrossRef]
- Elkins, C.J.; Alley, M.T. Magnetic resonance velocimetry: Applications of magnetic resonance imaging in the measurement of fluid motion. ExFluids 2007, 43, 823–858. [Google Scholar] [CrossRef]
- Lopes, A.; Rivas, J.; Taylor, H.; Orquiz, C.; Wicker, R. Measurement systems analysis for beam compensation, scaling factors and geometric dimensioning for a metallic additively manufactured test artifact. Prog. Addit. Manuf. 2025, 10, 2817–2830. [Google Scholar] [CrossRef]
- Weaver, J.S.; Schlenoff, A.; Deisenroth, D.C.; Moylan, S.P. Inert Gas Flow Speed Measurements in Laser Powder Bed Fusion Additive Manufacturing; NIST AMS 100-43; National Institute of Standards and Technology (U.S.): Gaithersburg, MD, USA, 2021. [CrossRef]
- ISO 11146-1:2021; Lasers and Laser-Related Equipment—Test Methods for Laser Beam Widths, Divergence Angles and Beam Propagation Ratios. ISO: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/77769.html (accessed on 19 December 2025).
- Fathi-Hafshejani, P.; Soltani-Tehrani, A.; Shamsaei, N.; Mahjouri-Samani, M. Laser incidence angle influence on energy density variations, surface roughness, and porosity of additively manufactured parts. Addit. Manuf. 2022, 50, 102572. [Google Scholar] [CrossRef]
- Saride, R.K.; Vajjala, S.; Kumar, A.; Kumar, R.; Pappula, L.; Ginuga, J.R. Processing and Characterization of Maraging Steel Using LPBF Additive Manufacturing Technology. Int. J. Mech. Eng. Appl. 2023, 11, 81–93. [Google Scholar] [CrossRef]
- Kan, W.H.; Chiu, L.N.; Lim, C.V.; Zhu, Y.; Tian, Y.; Jiang, D. A HuangA critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion. J. Mater. Sci. 2022, 57, 9818–9865. [Google Scholar] [CrossRef]
- Kantzos, C.; Pauza, J.; Cunningham, R.; Narra, S.P.; Beuth, J.; Rollett, A. An Investigation of Process Parameter Modifications on Additively Manufactured Inconel 718 Parts. J. Mater. Eng. Perform. 2019, 28, 620–626. [Google Scholar] [CrossRef]
- Voisin, T.; Calta, N.P.; Khairallah, S.A.; Forien, J.-B.; Balogh, L.; Cunningham, R.W.; Rollett, A.D.; Wang, Y.M. Defects-dictated tensile properties of selective laser melted Ti-6Al-4V. Mater. Des. 2018, 158, 113–126. [Google Scholar] [CrossRef]
- Tiscareno, E.G.; Taylor, H.C.; Lynch, C.M.; Villalobos, J.R.; Wicker, R.B. Sensitivity of mechanical properties to processing defects: Is tensile testing an appropriate metric for laser beam metal powder bed fusion machine qualification? Addit. Manuf. 2024, 93, 104367. [Google Scholar] [CrossRef]













| Scan Parameters | Magnitude | Units |
|---|---|---|
| Layer Thickness | 0.05 | mm |
| Laser Power | 350 | W |
| Laser Speed | 1250 | mm/s |
| Hatch Distance | 0.12 | mm |
| Plate Label | Velocity (m/s) | |
|---|---|---|
| OEM | MOD | |
| A | −0.27 | 2.84 |
| B | −0.58 | 3.06 |
| C | −0.62 | 3.02 |
| D | −0.51 | 2.88 |
| E | −0.49 | 3.06 |
| H | 0.57 | 2.43 |
| M | 1.96 | 1.81 |
| Beam Characteristic | Original | With Spacer Ring |
|---|---|---|
| Astigmatism | 15.15 | 15.62 |
| Beam waist diameter average [µm] | 89.59 | 92.10 |
| Beam waist position average [µm] | 6.76 | 6.91 |
| Rayleigh range average [mm] | 4.43 | 4.39 |
| Divergence average [mRad] | 20.25 | 20.96 |
| M2 | 1.33 | 1.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Estrada Medinilla, H.H.; Elkins, C.J.; Mireles, J.; Estrada, A.; Wicker, R.B. Improving Shielding Gas Flow Distribution to Enhance Quality and Consistency in Metal Laser Powder Bed Fusion Processes. J. Manuf. Mater. Process. 2026, 10, 3. https://doi.org/10.3390/jmmp10010003
Estrada Medinilla HH, Elkins CJ, Mireles J, Estrada A, Wicker RB. Improving Shielding Gas Flow Distribution to Enhance Quality and Consistency in Metal Laser Powder Bed Fusion Processes. Journal of Manufacturing and Materials Processing. 2026; 10(1):3. https://doi.org/10.3390/jmmp10010003
Chicago/Turabian StyleEstrada Medinilla, H. Hugo, Christopher J. Elkins, Jorge Mireles, Andres Estrada, and Ryan B. Wicker. 2026. "Improving Shielding Gas Flow Distribution to Enhance Quality and Consistency in Metal Laser Powder Bed Fusion Processes" Journal of Manufacturing and Materials Processing 10, no. 1: 3. https://doi.org/10.3390/jmmp10010003
APA StyleEstrada Medinilla, H. H., Elkins, C. J., Mireles, J., Estrada, A., & Wicker, R. B. (2026). Improving Shielding Gas Flow Distribution to Enhance Quality and Consistency in Metal Laser Powder Bed Fusion Processes. Journal of Manufacturing and Materials Processing, 10(1), 3. https://doi.org/10.3390/jmmp10010003

