Methodology and Uncertainty Analysis of Methane Flux Measurement for Small Sources Based on Unmanned Aerial Vehicles
Abstract
1. Introduction
2. Method
2.1. Aircraft and Instrumentation
2.2. Studied Areas
2.3. TERRA Method
2.4. Uncertainty Analysis
3. Results
4. Discussion
4.1. Accuracy and Uncertainty of the Method
4.2. The Explanation of Monitoring Failure
4.3. The Influence of Wind Speed and Direction on Measurement
4.4. The Influence of Flight Hight and Source Strength on Measurement
4.5. Optimization of Experimental Design
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, G.; Pitt, J.; Hollingsworth, P.; Mead, I.; Kabbabe, K.; Roberts, G.; Pricival, C. Measuring Landfill Methane Emissions Using Unmanned Aerial Systems: Field Trial and Operational Guidance; Environment Agency: Bristol, UK, 2015. [Google Scholar]
- Amini, S.; Kuwayama, T.; Gong, L.; Falk, M.; Chen, Y.; Mitloehner, Q.; Weller, S.; Mitloehner, F.M.; Patteson, D.; Conley, S.A.; et al. Evaluating California dairy methane emission factors using short-term ground-level and airborne measurements. Atmos. Environ. X 2022, 14, 100171. [Google Scholar] [CrossRef]
- Asadzadeh, S.; Oliveira, W.J.; Filho, C.R.S. UAV-based remote sensing for the petroleum industry and environmental monitoring: State-of-the-art and perspectives. J. Pet. Sci. Eng. 2022, 208, 109633. [Google Scholar] [CrossRef]
- Cambaliza, M.O.L.; Shepson, P.B.; Caulton, D.R. Assessment of uncertainties of an aircraft-based mass balance approach for quantifying urban greenhouse gas emissions. Atmos. Chem. Phys. 2014, 14, 9029–9050. [Google Scholar] [CrossRef]
- Christen, A. Atmospheric measurement techniques to quantify greenhouse gas emissions from cities. Urban Clim. 2014, 10, 241–260. [Google Scholar] [CrossRef]
- Conley, S.; Faloona, I.; Mehrotr, S.; Suard, M.; Lenschow, D.H.; Sweeney, C.; Herndon, S.; Schwietzke, S.; Pétron, G.; Pifer, J.; et al. Application of Gauss’s theorem to quantify localized surface emissions from airborne measurements of wind and trace gases. Atmos. Meas. Tech. 2017, 10, 3345–3358. [Google Scholar] [CrossRef]
- Corbett, A.; Smith, B. A Study of a Miniature TDLAS System Onboard Two Unmanned Aircraft to Independently Quantify Methane Emissions from Oil and Gas Production Assets and Other Industrial Emitters. Atmosphere 2022, 13, 804. [Google Scholar] [CrossRef]
- Erland, B.M.; Adams, C.; Darlington, A.; Smith, M.L.; Thorpe, A.K.; Wentworth, G.R.; Conley, S.; Liggio, J.; Li, S.-M.; Miller, C.E.; et al. Comparing airborne algorithms for greenhouse gas flux measurements over the Alberta oil sands. Atmos. Meas. Tech. 2022, 15, 5841–5859. [Google Scholar] [CrossRef]
- Fathi, S.; Gordon, M.; Makar, P.A.; Akingunola, A.; Darlington, A.; Liggio, J.; Hayden, K.; Li, S.-M. Evaluating the impact of storage-and-release on aircraft-based mass-balance methodology using a regional air-quality model. Atmos. Chem. Phys. 2021, 21, 15461–15491. [Google Scholar] [CrossRef]
- Gasbarra, D.; Toscano, P.; Famulari, D.; Finardi, S.; Di Tommasi, P.; Zaldei, A.; Carlucci, P.; Magliulo, E.; Gioli, B. Locating and quantifying multiple landfills methane emissions using aircraft data. Environ. Pollut. 2019, 254, 112987. [Google Scholar] [CrossRef]
- Gordon, M.; Li, S.M.; Staebler, R.; Darlington, A.; Hayden, K.; O’Brien, J.; Wolde, M. Determining air pollutant emission rates based on mass balance using airborne measurement data over the Alberta oil sands operations. Atmos. Meas. Tech. 2015, 8, 3745–3765. [Google Scholar] [CrossRef]
- Hedworth, H.A.; Sayahi, T.; Kelly, K.; Esaad, T. The effectiveness of drones in measuring particulate matter. J. Aerosol Sci. 2021, 152, 105702. [Google Scholar] [CrossRef]
- Karion, A.; Sweeney, C.; Kort, E.A.; Shepson, P.B.; Brewer, A.; Cambaliza, M.; Conley, S.A.; Davis, K.; Deng, A.; Hardesty, M.; et al. Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region. Environ. Sci. Technol. 2015, 49, 8124–8131. [Google Scholar] [CrossRef] [PubMed]
- Leifer, I.; Melton, C. Using mobile surface in situ and remote sensing and airborne remote sensing to derive emissions from a producing central California oil field in complex terrain. Atmos. Pollut. Res. 2021, 12, 101145. [Google Scholar] [CrossRef]
- Morales, R.; Ravelid, J.; Vinkovic, K.; Korbeń, P.; Tuzson, B.; Emmenegger, L.; Chen, H.; Schmidt, M.; Humbel, S.; Brunner, D. Controlled-release experiment to investigate uncertainties in UAV-based emission quantification for methane point source. Atmos. Meas. Tech. 2022, 15, 2177–2198. [Google Scholar] [CrossRef]
- Salman, C.A.; Thorina, E.; Yan, J. Uncertainty and influence of input parameters and assumptions on the design and analysis of thermochemical waste conversion processes: A stochastic approach. Energy Convers. Manag. 2020, 214, 112867. [Google Scholar] [CrossRef]
- Shaw, J.T.; Shah, A.; Yong, H.; Allen, G. Methods for quantifying methane emissions using unmanned aerial vehicles: A review. Phil. Trans. R. Soc. A 2021, 379, 20200450. [Google Scholar] [CrossRef] [PubMed]
- Smith, M. Airborne Methane Emissions Measurement Survey Final Summary Report; Scientific Aviation: Boulder, CO, USA, 2021. [Google Scholar]
- Suchanek, G.; Filipek, R.; Gołaś, A. Design and Implementation of a Particulate Matter Measurement System for Energy-Efficient Searching of Air Pollution Sources Using a Multirotor Robot. Energies 2023, 16, 2959. [Google Scholar] [CrossRef]
- Trainer, M.; Ridley, B.A.; Buhr, M.P. Regional ozone and urban plumes in the southeastern United States: Birmingham, a case study. J. Geophys. Res. 1995, 100, 18823–18834. [Google Scholar]
- Vaughn, T.L.; Bell, C.S.; Pickering, C.K.; Schwietzke, S.; Heath, G.A.; Pétron, G.; Zimmerle, D.J.; Schnell, R.C.; Nummedal, D. Temporal variability largely explains top-down/bottom-up difference in methane emission estimates from a natural gas production region. Proc. Natl. Acad. Sci. USA 2018, 115, 11712–11717. [Google Scholar] [CrossRef] [PubMed]
- Vinković, K.; Andersen, T.; de Vries, M.; Kers, B.; van Heuven, S.; Peters, W.; Hensen, A.; van den Bulk, P.; Chen, H. Evaluating the use of an Unmanned Aerial Vehicle (UAV)-based active AirCore system to quantify methane emissions from dairy cows. Sci. Total Environ. 2022, 831, 154898. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.; Wang, H.; Park, M.; Park, J.; Ahn, J.-Y.; Sung, M.; Choi, J.; Park, T.; Ban, J.; Kang, S.; et al. Optimizing an airborne mass-balance methodology for accurate emission rate quantification of industrial facilities: A case study of industrial facilities in South Korea. Sci. Total Environ. 2024, 912, 169204. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Talbot, R.W.; Frish, M.B.; Golston, L.M.; Aubut, N.F.; Zondlo, M.A.; Gretencord, C.; McSpiritt, J. Natural gas fugitive leak detection using an unmanned aerial vehicle: Measurement system description and mass balance approach. Atmosphere 2018, 9, 383. [Google Scholar] [CrossRef]
- Yang, X.; Kuru, E.; Zhang, X.; Zhang, S.; Wang, R.; Ye, J.; Yang, D.; Klemeš, J.J.; Wang, B. Direct measurement of methane emissions from the upstream oil and gas sector: Review of measurement results and technology advances (2018–2022). J. Clean. Prod. 2023, 414, 137693. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, J.; Zhang, X.; Guo, C. Atmospheric remote sensing for anthropogenic methane emissions: Applications and research opportunities. Sci. Total Environ. 2023, 893, 164701. [Google Scholar] [CrossRef] [PubMed]
Series No. | Name | Flight Date | Calculated Release Rate of CH4 by ODM (g/h) | Calculated Release Rate of CH4 by TERRA (g/h) | Relative Error (%) |
---|---|---|---|---|---|
1 | JD-R1 | 13/06/2023 | 13.118 | 19.2 | 46.4 |
2 | JD-T1 | 15/06/2023 | 833.3 | 841.7 | 1.0 |
3 | JD-R2 | 15/06/2023 | 527.5 | 586.1 | 11.1 |
4 | JD-712 | 12/07/2023 | 1.207 | −1.8 | / |
5 | JD-713 | 13/07/2023 | 8.432 | −3 | / |
6 | JD-715 | 15/07/2023 | 23.738 | 21.55 | −9.2 |
7 | JD-716-1 | 16/07/2023 | 17.976 | 21.9 | 21.8 |
8 | JD-716-2 | 16/07/2023 | 3.727 | −45.1 | / |
9 | LH-1142 | 16/09/2023 | 151.661 | 135.54 | −10.6 |
10 | LH-1529 | 16/09/2023 | 359.006 | −250.1 | / |
11 | LH-1743 | 16/09/2023 | 557.592 | 690.1 | 23.8 |
12 | LH-1606 | 17/09/2023 | 36.023 | 28.15 | −21.9 |
13 | LH-1024 | 19/09/2023 | 613.613 | 771.06 | 25.7 |
14 | LH-1244 | 19/09/2023 | 655.206 | −1018.5 | / |
15 | LH-1526 | 19/09/2023 | 736.931 | 651.4 | −11.6 |
16 | CQ-R1630 | 11/10/2023 | 3000 | 2380.6 | −20.6 |
17 | CQ-R1654 | 11/10/2023 | 4832 | −3709.7 | / |
18 | CQ-R0934 | 10/12/2023 | 2754 | −1440.65 | / |
19 | CQ-R1120 | 10/12/2023 | 2754 | −834.6 | / |
Name | Uncertainty by Wind Speed and Direction (g/h) | Percentage (%) | Uncertainty by CH4 Concentration (g/h) | Percentage (%) | Uncertainty by Background CH4 | Percentage (%) | Uncertainty by CH4 Plume (g/h) | Percentage (%) | Total Percentage (%) |
---|---|---|---|---|---|---|---|---|---|
JD-R1 | 12.66 | 65.93 | 3.71 | 19.27 | 7.37 | 38.39 | 0 | 0 | 78.69 |
JD-T1 | 367.4 | 43.65 | 94.05 | 11.17 | 173.95 | 20.67 | 0 | 0 | 49.57 |
JD-R2 | 170.17 | 29.03 | 148.42 | 25.32 | 216.11 | 36.88 | 0 | 0 | 53.33 |
JD-715 | 13.11 | 60.82 | 6.14 | 28.49 | 10.92 | 50.67 | 0 | 0 | 84.13 |
JD-716-1 | 8.25 | 37.62 | 3.09 | 14.08 | 6.13 | 27.94 | 0 | 0 | 48.93 |
NH-1142 | 43.89 | 32.38 | 35.76 | 26.38 | 66.22 | 48.86 | 55.53 | 40.97 | 76.22 |
NH-1743 | 162..17 | 23.50 | 88.19 | 12.78 | 202.67 | 29.37 | 0 | 0 | 39.73 |
NH-1606 | 17.30 | 61.47 | 7.69 | 27.31 | 10.97 | 38.97 | 5.1 | 18.1 | 79.82 |
NH-1024 | 206.68 | 26.80 | 77.63 | 10.07 | 168.08 | 21.8 | 424.39 | 55.04 | 65.76 |
NH-1526 | 200.16 | 30.72 | 99.11 | 15.21 | 196.62 | 30.18 | 0.2 | 0.03 | 45.67 |
CQ-R1630 | 515.81 | 21.67 | 314.98 | 13.23 | 484.63 | 20.36 | 104.27 | 4.38 | 32.84 |
Average | 155.54 | 39.42 | 79.89 | 18.48 | 140.33 | 33.10 | 53.59 | 10.80 | 55.75 |
Sampling Point | Fitted Normal Probability Density Function of CH4 Divergence (g/m·s) | Curve Type | Maximum Flight Altitude (m) | Uncertainty by CH4 Plume (%) |
---|---|---|---|---|
JD-R1 | III | 95 | 0 | |
JD-T1 | II | 80 | 0 | |
JD-R2 | III | 45 | 0 | |
JD-715 | II | 35 | 0 | |
JD-716-1 | II | 30 | 0 | |
NH-1142 | I | 35 | 40.97 | |
NH-1743 | III | 45 | 0 | |
NH-1606 | I | 45 | 18.10 | |
NH-1024 | I | 35 | 55.04 | |
NH-1526 | III | 35 | 0.03 | |
CQ-R1630 | III | 100 | 4.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Da, H.; Wang, C.; Tang, Z.; Luan, H.; Li, J.; Zeng, Y. Methodology and Uncertainty Analysis of Methane Flux Measurement for Small Sources Based on Unmanned Aerial Vehicles. Drones 2024, 8, 366. https://doi.org/10.3390/drones8080366
Xu D, Da H, Wang C, Tang Z, Luan H, Li J, Zeng Y. Methodology and Uncertainty Analysis of Methane Flux Measurement for Small Sources Based on Unmanned Aerial Vehicles. Drones. 2024; 8(8):366. https://doi.org/10.3390/drones8080366
Chicago/Turabian StyleXu, Degang, Hongju Da, Chen Wang, Zhihe Tang, Hui Luan, Jufeng Li, and Yong Zeng. 2024. "Methodology and Uncertainty Analysis of Methane Flux Measurement for Small Sources Based on Unmanned Aerial Vehicles" Drones 8, no. 8: 366. https://doi.org/10.3390/drones8080366
APA StyleXu, D., Da, H., Wang, C., Tang, Z., Luan, H., Li, J., & Zeng, Y. (2024). Methodology and Uncertainty Analysis of Methane Flux Measurement for Small Sources Based on Unmanned Aerial Vehicles. Drones, 8(8), 366. https://doi.org/10.3390/drones8080366