Robust Radar Inertial Odometry in Dynamic 3D Environments
Abstract
:1. Introduction
- We developed a 4D long-range radar-based navigation frontend, which includes odometry and a velocity estimator to estimate the radar ego–motion.
- We built a backend estimator, which factorizes the radar odometry, Doppler velocities, and IMU measurement in a factor graph and solves the robot’s poses in a sliding window fashion.
- We extensively tested our framework in complex large-scale 2D/3D environments, including dynamic objects.
2. Radar Odometry
2.1. Point Cloud Filter
2.1.1. Spatial Filter
2.1.2. Point Cloud Filtering from Dynamic Targets
2.2. NDT-Based Odometry
Algorithm 1: NDT-based SLAM algorithm |
2.3. Doppler Ego–Motion Estimation
3. Nonlinear Estimator
3.1. Estimator Formulation
3.2. Factorization
3.2.1. IMU Preintegration Factor
3.2.2. Odometry Factor
3.2.3. Velocity Prior Factor
4. Experiment Results
4.1. Experiment Setups
4.1.1. System Setups
4.1.2. Experimental Environments
4.1.3. Metrics
4.2. Experiment Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barfoot, T.D. State Estimation for Robotics; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef]
- Forster, C.; Pizzoli, M.; Scaramuzza, D. SVO: Fast semi-direct monocular visual odometry. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 15–22. [Google Scholar]
- Zhang, J.; Singh, S. LOAM: Lidar odometry and mapping in real-time. In Proceedings of the Robotics: Science and Systems, Berkeley, CA, USA, 12–16 July 2014; Volume 2, pp. 1–9. [Google Scholar]
- Yi, S.; Lyu, Y.; Hua, L.; Pan, Q.; Zhao, C. Light-LOAM: A Lightweight LiDAR Odometry and Mapping based on Graph-Matching. IEEE Robot. Autom. Lett. 2024, 9, 3219–3226. [Google Scholar] [CrossRef]
- Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef]
- Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; IEEE: Piscataway, NJ, USA, 2020; pp. 5135–5142. [Google Scholar]
- Kasper, A.; Xue, Z.; Dillmann, R. The KIT object models database: An object model database for object recognition, localization and manipulation in service robotics. Int. J. Robot. Res. 2012, 31, 927–934. [Google Scholar] [CrossRef]
- Lyu, Y.; Nguyen, T.M.; Liu, L.; Cao, M.; Yuan, S.; Nguyen, T.H.; Xie, L. SPINS: A structure priors aided inertial navigation system. J. Field Robot. 2023, 40, 879–900. [Google Scholar] [CrossRef]
- Lyu, Y.; Yuan, S.; Xie, L. Structure Priors Aided Visual-Inertial Navigation in Building Inspection Tasks with Auxiliary Line Features. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3037–3048. [Google Scholar] [CrossRef]
- Lyu, Y.; Cao, M.; Yuan, S.; Xie, L. Vision-Based Plane Estimation and following for Building Inspection with Autonomous UAV. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 7475–7488. [Google Scholar] [CrossRef]
- Hong, Z.; Petillot, Y.; Wallace, A.; Wang, S. RadarSLAM: A robust simultaneous localization and mapping system for all weather conditions. Int. J. Robot. Res. 2022, 41, 519–542. [Google Scholar] [CrossRef]
- Kim, G.; Park, Y.S.; Cho, Y.; Jeong, J.; Kim, A. Mulran: Multimodal range dataset for urban place recognition. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 6246–6253. [Google Scholar]
- Burnett, K.; Schoellig, A.P.; Barfoot, T.D. Do We Need to Compensate for Motion Distortion and Doppler Effects in Spinning Radar Navigation? IEEE Robot. Autom. Lett. 2021, 6, 771–778. [Google Scholar] [CrossRef]
- Lim, H.; Han, K.; Shin, G.; Kim, G.; Hong, S.; Myung, H. ORORA: Outlier-Robust Radar Odometry. arXiv 2023, arXiv:2303.01876. [Google Scholar]
- Kramer, A.; Harlow, K.; Williams, C.; Heckman, C. ColoRadar: The direct 3D millimeter wave radar dataset. Int. J. Robot. Res. 2022, 41, 351–360. [Google Scholar] [CrossRef]
- Zhuang, Y.; Wang, B.; Huai, J.; Li, M. 4D iRIOM: 4D Imaging Radar Inertial Odometry and Mapping. IEEE Robot. Autom. Lett. 2023, 8, 3246–3253. [Google Scholar] [CrossRef]
- Biber, P.; Strasser, W. The normal distributions transform: A new approach to laser scan matching. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Las Vegas, NV, USA, 27–31 October 2003; Volume 3, pp. 2743–2748. [Google Scholar] [CrossRef]
- Doer, C.; Trommer, G.F. An EKF Based Approach to Radar Inertial Odometry. In Proceedings of the 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Karlsruhe, Germany, 14–16 September 2020; pp. 152–159. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Kellner, D.; Barjenbruch, M.; Klappstein, J.; Dickmann, J.; Dietmayer, K. Instantaneous ego-motion estimation using doppler radar. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9 October 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 869–874. [Google Scholar]
- Park, Y.S.; Shin, Y.S.; Kim, J.; Kim, A. 3d ego-motion estimation using low-cost mmwave radars via radar velocity factor for pose-graph slam. IEEE Robot. Autom. Lett. 2021, 6, 7691–7698. [Google Scholar] [CrossRef]
- Dellaert, F. Factor Graphs and GTSAM: A Hands-On Introduction; Technical Report; Georgia Institute of Technology: Atlanta, Georgia, 2012. [Google Scholar]
- Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. On-manifold preintegration for real-time visual–inertial odometry. IEEE Trans. Robot. 2016, 33, 1–21. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Cao, M.; Yuan, S.; Lyu, Y.; Nguyen, T.H.; Xie, L. Viral-fusion: A visual-inertial-ranging-lidar sensor fusion approach. IEEE Trans. Robot. 2021, 38, 958–977. [Google Scholar] [CrossRef]
- Grupp, M. Evo: Python Package for the Evaluation of Odometry and SLAM. 2017. Available online: https://github.com/MichaelGrupp/evo (accessed on 3 May 2024).
Max. | Mean | Median | Min. | RMSE | SSE | Std. | |
---|---|---|---|---|---|---|---|
Scene 1 | 2.598 | 0.134 | 0.099 | 0.006 | 0.220 | 63.009 | 0.174 |
Scene 2 | 2.697 | 0.082 | 0.067 | 0.006 | 0.106 | 62.806 | 0.066 |
Scene 3 | 4.464 | 0.074 | 0.068 | 0.027 | 0.151 | 56.348 | 0.131 |
Scene 4 | 3.468 | 0.078 | 0.075 | 0.009 | 0.091 | 58.641 | 0.047 |
Max. | Mean | Median | Min. | RMSE | SSE | Std. | |
---|---|---|---|---|---|---|---|
Scene 1 | 15.863 | 4.027 | 2.961 | 0.255 | 5.067 | 33,357.022 | 3.075 |
Scene 2 | 6.417 | 1.768 | 1.693 | 0.244 | 1.917 | 20,415.619 | 0.741 |
Scene 3 | 4.902 | 0.337 | 0.300 | 0.016 | 0.390 | 375.374 | 0.197 |
Scene 4 | 0.932 | 0.316 | 0.326 | 0.037 | 0.348 | 841.778 | 0.144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, Y.; Hua, L.; Wu, J.; Liang, X.; Zhao, C. Robust Radar Inertial Odometry in Dynamic 3D Environments. Drones 2024, 8, 197. https://doi.org/10.3390/drones8050197
Lyu Y, Hua L, Wu J, Liang X, Zhao C. Robust Radar Inertial Odometry in Dynamic 3D Environments. Drones. 2024; 8(5):197. https://doi.org/10.3390/drones8050197
Chicago/Turabian StyleLyu, Yang, Lin Hua, Jiaming Wu, Xinkai Liang, and Chunhui Zhao. 2024. "Robust Radar Inertial Odometry in Dynamic 3D Environments" Drones 8, no. 5: 197. https://doi.org/10.3390/drones8050197
APA StyleLyu, Y., Hua, L., Wu, J., Liang, X., & Zhao, C. (2024). Robust Radar Inertial Odometry in Dynamic 3D Environments. Drones, 8(5), 197. https://doi.org/10.3390/drones8050197