A Systematic Review of UAVs for Island Coastal Environment and Risk Monitoring: Towards a Resilience Assessment
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Platforms
3.2. Sensors and Cameras
3.3. Software
3.4. Georeferencing and Validation Techniques
4. Discussion
4.1. UAVs for Coastal Zone Monitoring in Island Territories
4.1.1. Benefits and Advantages
4.1.2. Limitations and Challenges
4.2. Quantification of UAV Data for Resilience Evaluation
4.2.1. Postprocessing and Analysis of UAV Data for the Quantification of Indicators
4.2.2. Using Indicators to Evaluate Territorial Resilience
4.3. Application of a Localized Spatial Decision Support System: Resilience Observatory
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. General Assembley 70 Session. 2015. Available online: https://sdgs.un.org/2030agenda (accessed on 16 December 2021).
- Rifat, S.A.A.; Liu, W. Measuring Community Disaster Resilience in the Conterminous Coastal United States. ISPRS Int. J. Geo-Inf. 2020, 9, 469. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 321–445. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Wang, J.; Yue, Y.; Zhou, H.; Yin, W. Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective. Nat. Hazards 2014, 70, 609–627. [Google Scholar] [CrossRef]
- Gonçalves, J.A.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, J.; Xiao, X.; Ma, Z.; Tan, K.; Melville, D.; Li, B.; Lu, H.; Liu, J.; Liu, F. Effects of reclamation and natural changes on coastal wetlands bordering China’s Yellow Sea from 1984 to 2015. Land Degrad. Dev. 2019, 30, 1533–1544. [Google Scholar] [CrossRef]
- Long, N.; Millescamps, B.; Guillot, B.; Pouget, F.; Bertin, X. Monitoring the Topography of a Dynamic Tidal Inlet Using UAV Imagery. Remote Sens. 2016, 8, 387. [Google Scholar] [CrossRef] [Green Version]
- Murfitt, S.L.; Allan, B.M.; Bellgrove, A.; Rattray, A.; Young, M.A.; Ierodiaconou, D. Applications of unmanned aerial vehicles in intertidal reef monitoring. Sci. Rep. 2017, 7, 10259. [Google Scholar] [CrossRef] [Green Version]
- Appeaning Addo, K.; Jayson-Quashigah, P.-N.; Codjoe, S.N.A.; Martey, F. Drone as a tool for coastal flood monitoring in the Volta Delta, Ghana. Geoenviron. Disasters 2018, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Albuquerque, M.d.G.; Leal Alves, D.C.; Espinoza, J.M.d.A.; Oliveira, U.R.; Simões, R.S. Determining Shoreline Response to Meteo-oceanographic Events Using Remote Sensing and Unmanned Aerial Vehicle (UAV): Case Study in Southern Brazil. J. Coast. Res. 2018, 85, 766–770. [Google Scholar] [CrossRef]
- Casella, E.; Collin, A.; Harris, D.; Ferse, S.; Bejarano, S.; Parravicini, V.; Hench, J.L.; Rovere, A. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 2017, 36, 269–275. [Google Scholar] [CrossRef]
- Collin, A.; Ramambason, C.; Pastol, Y.; Casella, E.; Rovere, A.; Thiault, L.; Espiau, B.; Siu, G.; Lerouvreur, F.; Nakamura, N.; et al. Very high resolution mapping of coral reef state using airborne bathymetric LiDAR surface-intensity and drone imagery. Int. J. Remote Sens. 2018, 39, 5676–5688. [Google Scholar] [CrossRef] [Green Version]
- Doughty, C.; Cavanaugh, K. Mapping Coastal Wetland Biomass from High Resolution Unmanned Aerial Vehicle (UAV) Imagery. Remote Sens. 2019, 11, 540. [Google Scholar] [CrossRef] [Green Version]
- Krenz, J.; Kuhn, N.J. Assessing Badland Sediment Sources Using Unmanned Aerial Vehicles. In Badlands Dynamics in a Context of Global Change; Elsevier: Amsterdam, The Netherlands, 2018; pp. 255–276. [Google Scholar] [CrossRef]
- Laporte-Fauret, Q.; Marieu, V.; Castelle, B.; Michalet, R.; Bujan, S.; Rosebery, D. Low-Cost UAV for High-Resolution and Large-Scale Coastal Dune Change Monitoring Using Photogrammetry. J. Mar. Sci. Eng. 2019, 7, 63. [Google Scholar] [CrossRef] [Green Version]
- Rieucau, G.; Kiszka, J.J.; Castillo, J.C.; Mourier, J.; Boswell, K.M.; Heithaus, M.R. Using unmanned aerial vehicle (UAV) surveys and image analysis in the study of large surface-associated marine species: A case study on reef sharks Carcharhinus melanopterus shoaling behavior. J. Fish Biol. 2018, 93, 119–127. [Google Scholar] [CrossRef]
- Su, L.; Gibeaut, J. Using UAS Hyperspatial RGB Imagery for Identifying Beach Zones along the South Texas Coast. Remote Sens. 2017, 9, 159. [Google Scholar] [CrossRef] [Green Version]
- SAU. Plan de Prévention des Risques Naturels de Punaauia; Report from the Municipality of Punaauia. 2016. Available online: http://www.punaauia.pf/ (accessed on 1 December 2021).
- Kardel, I.; Chormanski, J.; Miroslaw-Swiatek, D.; Okruszko, T.; Grygoruk, M.J.M. Decision Support System for Biebrza National Park. In Efficient Decision Support Systems—Practice and Challenges From Current to Future; Jao, C., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef] [Green Version]
- Saroglou, C.; Asteriou, P.; Zekkos, D.; Tsiambaos, G.; Clark, M.; Manousakis, J. UAV-based mapping, back analysis and trajectory modeling of a coseismic rockfall in Lefkada island, Greece. Nat. Hazards Earth Syst. Sci. 2018, 18, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Kartoziia, A. Assessment of the Ice Wedge Polygon Current State by Means of UAV Imagery Analysis (Samoylov Island, the Lena Delta). Remote Sens. 2019, 11, 1627. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wan, B.; Qiu, P.; Zuo, Z.; Wang, R.; Wu, X. Mapping Height and Aboveground Biomass of Mangrove Forests on Hainan Island Using UAV-LiDAR Sampling. Remote Sens. 2019, 11, 2156. [Google Scholar] [CrossRef] [Green Version]
- Devoto, S.; Macovaz, V.; Mantovani, M.; Soldati, M.; Furlani, S. Advantages of Using UAV Digital Photogrammetry in the Study of Slow-Moving Coastal Landslides. Remote Sens. 2020, 12, 3566. [Google Scholar] [CrossRef]
- Lowe, M.; Adnan, F.; Hamylton, S.; Carvalho, R.; Woodroffe, C. Assessing Reef-Island Shoreline Change Using UAV-Derived Orthomosaics and Digital Surface Models. Drones 2019, 3, 44. [Google Scholar] [CrossRef] [Green Version]
- Hamylton, S.M.; Morris, R.H.; Carvalho, R.C.; Roder, N.; Barlow, P.; Mills, K.; Wang, L. Evaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning approaches. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102085. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.; Lampropoulou, P.; Fakiris, E.; Sardelianos, D.; Papatheodorou, G. Synergistic Use of UAV and USV Data and Petrographic Analyses for the Investigation of Beachrock Formations: A Case Study from Syros Island, Aegean Sea, Greece. Minerals 2018, 8, 534. [Google Scholar] [CrossRef] [Green Version]
- Ružić, I.; Benac, Č.; Jovančević, S.D.; Radišić, M. The Application of UAV for the Analysis of Geological Hazard in Krk Island, Croatia, Mediterranean Sea. Remote Sens. 2021, 13, 1790. [Google Scholar] [CrossRef]
- Lee, E.; Yoon, H.; Hyun, S.P.; Burnett, W.C.; Koh, D.-C.; Ha, K.; Kim, D.; Kim, Y.; Kang, K. Unmanned aerial vehicles (UAVs)-based thermal infrared (TIR) mapping, a novel approach to assess groundwater discharge into the coastal zone. Limnol. Oceanogr. Methods 2016, 14, 725–735. [Google Scholar] [CrossRef]
- Pitman, S.J.; Hart, D.E.; Katurji, M.H. Application of UAV techniques to expand beach research possibilities: A case study of coarse clastic beach cusps. Cont. Shelf Res. 2019, 184, 44–53. [Google Scholar] [CrossRef]
- Taddia, Y.; Pellegrinelli, A.; Corbau, C.; Franchi, G.; Staver, L.W.; Stevenson, J.C.; Nardin, W. High-Resolution Monitoring of Tidal Systems Using UAV: A Case Study on Poplar Island, MD (USA). Remote Sens. 2021, 13, 1364. [Google Scholar] [CrossRef]
- Colica, E.; D’Amico, S.; Iannucci, R.; Martino, S.; Gauci, A.; Galone, L.; Galea, P.; Paciello, A. Using unmanned aerial vehicle photogrammetry for digital geological surveys: Case study of Selmun promontory, northern of Malta. Environ. Earth Sci. 2021, 80, 551. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, N.; Gao, B.; Xu, Y.; Chen, J. Semi-automatic mapping of dyke and dyke-related fractures using UAV-based photogrammetric data: A case study from Sijiao Island, coastal Southeastern China. J. Struct. Geol. 2020, 132, 103971. [Google Scholar] [CrossRef]
- Carvalho, R.C.; Woodroffe, C.D. Morphological Exposure of Rocky Platforms: Filling the Hazard Gap Using UAVs. Drones 2019, 3, 42. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Leng, W.; Liu, K.; Liu, L.; He, Z.; Zhu, Y. Object-Based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models. Remote Sens. 2018, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Topouzelis, K.; Papakonstantinou, A.; Doukari, M. Coastline change detection using unmanned aerial vehicles and image processing techniques. Fresenius Environ. Bull. 2017, 26, 5564–5571. [Google Scholar]
- Chen, B.; Yang, Y.; Wen, H.; Ruan, H.; Zhou, Z.; Luo, K.; Zhong, F. High-resolution monitoring of beach topography and its change using unmanned aerial vehicle imagery. Ocean. Coast. Manag. 2018, 160, 103–116. [Google Scholar] [CrossRef]
- Deidun, A.; Gauci, A.; Lagorio, S.; Galgani, F. Optimising beached litter monitoring protocols through aerial imagery. Mar. Pollut. Bull. 2018, 131, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Marfai, M.A.; Sunarto Khakim, N.; Cahyadi, A.; Rosaji, F.; Fatchurohman, H.; Wibowo, Y. Topographic data acquisition in tsunami-prone coastal area using Unmanned Aerial Vehicle (UAV). IOP Conf. Ser. Earth Environ. Sci. 2018, 148, 012004. [Google Scholar] [CrossRef]
- Koparan, C.; Koc, A.; Privette, C.; Sawyer, C. In Situ Water Quality Measurements Using an Unmanned Aerial Vehicle (UAV). System. Water 2018, 10, 264. [Google Scholar] [CrossRef] [Green Version]
- Kislik, C.; Dronova, I.; Kelly, M. UAVs in Support of Algal Bloom Research: A Review of Current Applications and Future Opportunities. Drones 2018, 2, 35. [Google Scholar] [CrossRef] [Green Version]
- Fazeli, H.; Samadzadegan, F.; Dadrasjavan, F. Evaluating the potential of RTK-UAV for automatic point cloud generation in 3d rapid mapping. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Leibniz University Hannover: Hanover, Germany, 2016; Volume XLI-B6, pp. 221–226. [Google Scholar] [CrossRef]
- Jessin, J.; Heinzlef, C.; Long, N.; Serre, D. Supporting a Resilience Observatory to Climate Risks in French Polynesia: From Valorization of Preexisting Data to Low-Cost Data Acquisition. Water 2022, 14, 359. [Google Scholar] [CrossRef]
- Kilfoil, J.P.; Rodriguez-Pinto, I.; Kiszka, J.J.; Heithaus, M.R.; Zhang, Y.; Roa, C.C.; Ailloud, L.E.; Campbell, M.D.; Wirsing, A.J. Using unmanned aerial vehicles and machine learning to improve sea cucumber density estimation in shallow habitats. ICES J. Mar. Sci. 2020, 77, 2882–2889. [Google Scholar] [CrossRef]
- Kiszka, J.J.; Mourier, J.; Gastrich, K.; Heithaus, M.R. Using unmanned aerial vehicles (UAVs) to investigate shark and ray densities in a shallow coral lagoon. Mar. Ecol. Prog. Ser. 2016, 560, 237–242. [Google Scholar] [CrossRef]
- Ventura, D.; Bonifazi, A.; Gravina, M.F.; Belluscio, A.; Ardizzone, G. Mapping and Classification of Ecologically Sensitive Marine Habitats Using Unmanned Aerial Vehicle (UAV) Imagery and Object-Based Image Analysis (OBIA). Remote Sens. 2018, 10, 1331. [Google Scholar] [CrossRef] [Green Version]
- Ellis, S.L.; Taylor, M.L.; Schiele, M.; Letessier, T.B. Influence of altitude on tropical marine habitat classification using imagery from fixed-wing, water-landing UAV s. Remote Sens. Ecol. Conserv. 2021, 7, 50–63. [Google Scholar] [CrossRef]
- Li, D.; Tang, C.; Hou, X.; Zhang, H. Rapid morphological changes caused by intensive coastal development in Longkou Bay, China. J. Coast. Res. 2019, 35, 615–624. [Google Scholar] [CrossRef]
- Papakonstantinou, A.; Topouzelis, K.; Pavlogeorgatos, G. Coastline Zones Identification and 3D Coastal Mapping Using UAV Spatial Data. IJGI 2016, 5, 75. [Google Scholar] [CrossRef] [Green Version]
- Takasu, T.; Yasuda, A. Evaluation of RTK-GPS Performance with Low-Cost Single-Frequency GPS Receivers; Tokyo University of Marine Science and Technology: Tokyo, Japan, 2008; Available online: http://gpspp.sakura.ne.jp/paper2005/isgps2008_paper_ttaka.pdf (accessed on 20 May 2022).
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Taddia, Y.; Stecchi, F.; Pellegrinelli, A. Using Dji Phantom 4 Rtk Drone for Topographic Mapping of Coastal Areas. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Leibniz University Hannover: Hanover, Germany, 2019; Volume XLII-2/W13, pp. 625–630. [Google Scholar] [CrossRef] [Green Version]
- Pimm, S.; Donohue, I.; Montoya, J.; Loreau, M. Measuring resilience is essential to understand it. Nat. Sustain. 2019, 2, 895–897. [Google Scholar] [CrossRef]
- Assarkhaniki, Z.; Rajabifard, A.; Sabri, S. The conceptualisation of resilience dimensions and comprehensive quantification of the associated indicators: A systematic approach. Int. J. Disaster Risk Reduct. 2020, 51, 101840. [Google Scholar] [CrossRef]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A place-based model for understanding community resilience to natural disasters. Glob. Environ. Chang. 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Cutter, S.L. The landscape of disaster resilience indicators in the USA. Nat. Hazards 2016, 80, 741–758. [Google Scholar] [CrossRef]
- Song, J.; Huang, B.; Li, R. Assessing local resilience to typhoon disasters: A case study in Nansha, Guangzhou. PLoS ONE 2018, 13, e0190701. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, K. A methodology for supporting decision making in integrated coastal zone management. Ocean. Coast. Manag. 1998, 39, 51–62. [Google Scholar] [CrossRef]
- Heinzlef, C.; Vincent, B.; Damien, S. A spatial decision support system for enhancing resilience to floods. Bridging resilience modeling and geovisualization techniques. Nat. Hazards Earth Syst. Sci. 2019, 20, 1049–1068. [Google Scholar] [CrossRef] [Green Version]
- Jadidi, M.; Mostafavi, M.A.; Bédard, Y.; Long, B. Toward an Integrated Spatial Decision Support System to Improve Coastal Erosion Risk Assessment: Modeling and Representation of Risk Zones. In Proceedings of the FIG Working Week 2012: Knowing to Manage the Territory, Protect the Environment, Evaluate the Cultural Heritage, Rome, Italy, 6–10 May 2012. [Google Scholar]
- Bourlier, B.; Choisy, C.; Pouget, P.; Curt, C.; Heinzlef, C.; Serre, D.; Taillandier, F. Evaluation de la résilience urbaine face au risque d’inondation: Application l’agglomération de Papeete. Acad. J. Civ. Eng. 2021, 39, 67–70. [Google Scholar] [CrossRef]
- Heinzlef, C.; Barroca, B.; Leone, M.; Serre, D. Urban resilience operationalization issues in climate risk management: A review. Int. J. Disaster Risk Reduct. 2022, 75, 102974. [Google Scholar] [CrossRef]
- Heinzlef, C.; Serre, D. Urban resilience: From a limited urban engineering vision to a more global comprehensive and long-term implementation. Water Secur. 2020, 11, 100075. [Google Scholar] [CrossRef]
- Heinzlef, C.; Serre, D. Understanding and Implementing Urban Resilience for Comprehensive and Local Risk Management. In Disaster Risk Reduction for Resilience: Disaster Risk Management Strategies; Eslamian, S., Eslamian, F., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 103–128. [Google Scholar] [CrossRef]
- Lamaury, Y.; Jessin, J.; Heinzlef, C.; Serre, D. Operationalizing Urban Resilience to Floods in Island Territories—Application in Punaauia, French Polynesia. Water 2021, 13, 337. [Google Scholar] [CrossRef]
- Serre, D.; Heinzlef, C. Long-Term Resilience to Climate Change Risks in French Polynesian Community. In The Palgrave Handbook of Climate Resilient Societies; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–28. [Google Scholar] [CrossRef]
- Fekete, A.; Hufschmidt, G.; Kruse, S. Benefits and Challenges of Resilience and Vulnerability for Disaster Risk Management. Int. J. Disaster Risk Sci. 2014, 5, 3–20. [Google Scholar] [CrossRef] [Green Version]
Location | Platform | Sensor | Object of Study | Research Question | Production | Limitations | Reference |
---|---|---|---|---|---|---|---|
Lefkada Island, Greece | DJI Phantom 3 Professional | DJI FC330 | Seismic rockfall | Analytical reconstruction and modeling of rockfall trajectory by UAV post-earthquake | High resolution orthomosaic and digital terrain model | - Experience required- Too many GCPs | [21] |
Samoylov Island, Russia | Supercam S 250, Unmanned Systems | Sony Alpha 6000 | Ice wedges | Assessing the status of ice wedge polygon degradation with UAV data | Orthophoto maps and digital terrain model maps | Photogrammetry software limitations with water surfaces | [22] |
Hainan Island, China | DJI M600 | Velodyne VLP—16 Puck (LiDAR) | Mangrove forests | Estimating and mapping the mangrove height and aboveground biomass | Digital elevation and surface models | Limited by loading capacity, thus weaker (lighter) LiDAR sensor | [23] |
Malta, Northwestern Coast | DJI Mavic | DJI FC330 | Coastal landslides | Advantages of using drones to study large, slow-moving coastal landslides | Orthomosaics and 3D models | - Restrictive regulations- Skilled operator required- Negative effect of vegetation on the point cloud | [24] |
Sipadan, Malaysia, and Sasahura Ite, Solomon Isles | DJI Phantom 4 | DJI FC330 | Reef-island shoreline | Assessing shoreline change on the reef islands using UAV-derived models | Orthomosaics and digital surface models | - Limited spatial cover- GCPs: consumes time | [25] |
Five Island Nature Reserve, Australia | DJI Phantom 4 | DJI FC330 | Island coastal vegetation | Technique evaluation for mapping changes in island vegetation after herbicide spraying with UAVs | Orthomosaics for pixel classification | Three-band RBG cameras provide limited spectral data | [26] |
Syros Island, Greece | DJI Phantom 3 Advanced | DJI FC330 | Beach rock formations | Detection and investigation of beach-rock formations in shallow waters through synergetic UAVs | Orthomosaics and digital surface models | - Light waves reduce the quality of DSM | [27] |
Krk Island, Croatia | DJI Phantom 4 Pro | DJI FC6310 | Geology of coast | UAV for the analysis of geological hazards due to sea level rise | Orthomosaics and 3D point cloud | - Refraction correction is required - Clear sea conditions are needed for bathymetry | [28] |
Jeju Island, South Korea | DJI S1000 | FLIR T450sc (thermal infrared) | Groundwater discharge | Thermal infrared mapping by UAV to assess groundwater discharge into the coastal zone | Sea surface temperature maps | Limited spatial coverage | [29] |
Pegasus Bay, New Zealand | DJI Phantom 4 Pro | DJI 1 inch CMOS | Beach cusps | UAV techniques to expand beach research, beach cusps case study | Orthomosaics and digital surface models | - Weather sensitive- Non-water penetrating sensors | [30] |
Poplar Island, Maryland USA | DJI Phantom 3 Professional | DJI FC300X | Tidal systems | Monitoring channel morphodynamics and vegetation variations | Orthomosaics and digital terrain models | Too many GCPs (RTK needed) | [31] |
Maltese Islands | DJI Phantom 4 Pro | 1 ” Exmor R CMOS image sensor | Geological Surveys | Using UAV photogrammetry for digital geological surveys | Orthomosaic, digital elevation model, digitalized fractures map | - GCP accessibility - Weather conditions - Camera visibility | [32] |
Sijiao Island, China | DJI Phantom 4 Advanced | DJI FC330 | Dykes | Semi-automatic mapping of dyke and dyke related fractures using UAV-based photogrammetry | Orthophotos and digital elevation models | Not specified | [33] |
Illawarra Coast, Australia | DJI Phantom 4 | DJI FC330 | Rock platforms | Identifying rocky platform morphology for hazard management | Photomosaic and digital surface models | Not specified | [34] |
Qi’ao Island, China | Multi-rotor UAV platform (not specified) | UHD 185 (hyperspectral) | Mangrove species | Mangrove species classification | Digital surface models from hyperspectral images | - Water reflection- Turbidity | [35] |
Lesvos Island, Greece | Iris + | Canon 130 | Coastline change | Coastline change detection using UAVs and image processing techniques | Digital surface models and orthophotos | - Limited spatial coverage | [36] |
Dongshan Island, China | MD4-1000 Microdrones | Pentax option A40 | Beach topography | Monitoring beach topography change using UAVs | Orthomosaics and digital surface models | - A lot of GCPs for high vertical accuracy- Battery life for larger spatial coverage | [37] |
Maltese Islands | DJI Phantom 4 Pro | DJI FC330 | Beach litter | Optimizing protocol for beach litter monitoring | Litter density maps | - Sun glint- Turbidity | [38] |
Java Island, Indonesia | Bixler UAV | Canon A2500 | Coast topography | Topographic data acquisition in tsunami-prone coastal area using UAVs | Orthomosaic and digital surface model | - Battery life - Wind - Radio interference | [39] |
Number of Studies | Platform | Sensor | References | |
---|---|---|---|---|
Coastal Geomorphology | n = 10 | Fixed wing | RGB Camera | [22] |
Multi-rotor | [27] | |||
[36] | ||||
[30] | ||||
[33] | ||||
[28] | ||||
[34] | ||||
[37] | ||||
[32] | ||||
Thermal infrared | [29] | |||
Coastal Vegetation | n = 4 | LiDAR | [23] | |
Hyper-spectral | [35] | |||
RGB Camera | [31] | |||
[26] | ||||
Disaster Management | n = 5 | [21] | ||
[24] | ||||
[25] | ||||
[38] | ||||
Fixed wing | [39] |
Number of Studies | Manufacturer | References | |
---|---|---|---|
Fixed Wing | n = 2 | Supercam S 250, Unmanned Systems | [22] |
Bixler UAV | [39] | ||
Multi-Rotor | n = 17 | DJI (n = 14) | [21,23,24,25,26,27,28,29,30,31,32,33,34,38] |
Quadcopter Iris+ | [36] | ||
MD4-1000 Microdrones | [37] | ||
Brand not specified | [35] |
Sensor Type | Model and Specs | Resolution | Weight (g) | Price ($) | Reference |
---|---|---|---|---|---|
RGB Camera | DJI FC330 3.61 mm 1/2.3 ” CMOS | 12.4 Megapixels (MP) | - | 1599.00 (sold with UAV) | [21,25,26,27,28,31,33,34,38] |
Canon ELPH 130 | 16 MP | 131 | 199.00 | [36] | |
Sony Alpha6000 24.7 MP APS-C | 24.7 MP | 344 | 648.00 | [22] | |
DJI 1 inch CMOS | 20 MP | 368 (with gimbal) | 1995.00 (sold with UAV) | [30] | |
Pentax option A40 7.9 mm | 12 MP | 150 | 249.00 | [30] | |
Canon A2500 1/2.3 | 16 MP | 135 | 150.00 | [39] | |
LiDAR | Velodyne VLP—16 Puck | 16 channels, ~300,000 points/sec | 830 | 8800.00 | [23] |
Hyper-spectral | UHD 185 hyperspectral | 125 bands | 490 | 3790.00 | [35] |
Thermal Infrared | FLIR T450sc (thermal infrared) | From −40 °C to +650 °C | 880 | 5000.00 | [29] |
Workflow | Software | Uses | Reference |
---|---|---|---|
Mission planning | DJI Flightplanner | Flight path and planning | [24] |
Imaging | Agisoft Metashape | Photogrammetry | [39] |
Photomod package | Photogrammetry | [22] | |
OpenDroneMap | Photogrammetry | [38] | |
EasyUAV | Photogrammetry | [33] | |
PiX4Dmapper | Photogrammetry | [25] | |
ERDAS Imagine | Orthophoto processing | [27] | |
POSPac UAV | LiDAR point cloud | [23] | |
LiDAR360 | LiDAR digital model production | [23] | |
ResearchIR | Thermal infrared imagery processing | [29] | |
Cubert-Pilot | Hyperspectral image fusing | [35] | |
Analysis | ArcGIS | GIS analysis and geomorphological mapping | [37] |
ROCFall | Rockfall analysis | [21] | |
MATLAB | Cross-sectional analyses | [28] | |
Visualization | ArcGIS | Map production | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jessin, J.; Heinzlef, C.; Long, N.; Serre, D. A Systematic Review of UAVs for Island Coastal Environment and Risk Monitoring: Towards a Resilience Assessment. Drones 2023, 7, 206. https://doi.org/10.3390/drones7030206
Jessin J, Heinzlef C, Long N, Serre D. A Systematic Review of UAVs for Island Coastal Environment and Risk Monitoring: Towards a Resilience Assessment. Drones. 2023; 7(3):206. https://doi.org/10.3390/drones7030206
Chicago/Turabian StyleJessin, Jérémy, Charlotte Heinzlef, Nathalie Long, and Damien Serre. 2023. "A Systematic Review of UAVs for Island Coastal Environment and Risk Monitoring: Towards a Resilience Assessment" Drones 7, no. 3: 206. https://doi.org/10.3390/drones7030206
APA StyleJessin, J., Heinzlef, C., Long, N., & Serre, D. (2023). A Systematic Review of UAVs for Island Coastal Environment and Risk Monitoring: Towards a Resilience Assessment. Drones, 7(3), 206. https://doi.org/10.3390/drones7030206