Comparison of Radar Signatures from a Hybrid VTOL Fixed-Wing Drone and Quad-Rotor Drone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drones
2.2. Radar Signatures
2.3. Experimental Conditions
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, H.; Lyu, X.; Li, Z.; Shen, S.; Zhang, F. Development and Experimental Verification of a Hybrid Vertical Take-off and Landing (VTOL) Unmanned Aerial Vehicle (UAV). In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017; pp. 160–169. [Google Scholar]
- Sánchez, N. Spanish Police Seize Large Drone Used to Carry Drugs from Morocco. Available online: https://english.elpais.com/spain/2021-07-15/spanish-police-seize-large-drone-used-to-carry-drugs-from-morocco.html (accessed on 11 March 2022).
- Saballa, J. Russia Unveils New Hybrid ‘ZALA VTOL’ Drone. Available online: https://www.thedefensepost.com/2021/07/22/russia-zala-drone/ (accessed on 11 March 2022).
- Reichmann, K. Navy Awards PteroDynamics Contract for VTOL Drone. Available online: https://www.aviationtoday.com/2021/08/24/navy-awards-pterodynamics-contract-vtol-drone/ (accessed on 11 March 2022).
- Alcock, C. Chinese Logistics Group Turns to Pipistrel for New Cargo VTOL Drone. Available online: https://www.futureflight.aero/news-article/2021-04-12/chinese-logistics-group-turns-pipistrel-new-cargo-vtol-drone (accessed on 11 March 2022).
- Rahman, S.; Robertson, D.A. Radar Micro-Doppler Signatures of Drones and Birds at K-Band and W-Band. Sci. Rep. 2018, 8, 17396. [Google Scholar] [CrossRef] [PubMed]
- Beasley, P.; Ritchie, M.; Griffiths, H.; Miceli, W.; Inggs, M.; Lewis, S.; Kahn, B. Multistatic Radar Measurements of UAVs at X-Band and L-Band. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–6. [Google Scholar]
- Park, S.; Kim, H.T.; Lee, S.; Joo, H.; Kim, H. Survey on Anti-Drone Systems: Components, Designs, and Challenges. IEEE Access 2021, 9, 42635–42659. [Google Scholar] [CrossRef]
- Passafiume, M.; Rojhani, N.; Collodi, G.; Cidronali, A. Modeling Small UAV Micro-Doppler Signature Using Millimeter-Wave FMCW Radar. Electronics 2021, 10, 747. [Google Scholar] [CrossRef]
- Rahman, S.; Robertson, D.A. In-Flight RCS Measurements of Drones and Birds at K-Band and W-Band. IET Radar Sonar Navig. 2018, 13, 300–309. [Google Scholar] [CrossRef]
- Pieraccini, M.; Miccinesi, L.; Rojhani, N. RCS Measurements and ISAR Images of Small UAVs. IEEE Aerosp. Electron. Syst. Mag. 2017, 32, 28–32. [Google Scholar] [CrossRef]
- Peto, T.; Bilicz, S.; Szucs, L.; Gyimóthy, S.; Pávó, J. The Radar Cross Section of Small Propellers on Unmanned Aerial Vehicles. In Proceedings of the 2016 10th European Conference on Antennas and Propagation, EuCAP, Davos, Switzerland, 10–15 April 2016; pp. 1–4. [Google Scholar]
- Nakamura, R.; Hadama, H. Characteristics of Ultra-Wideband Radar Echoes from a Drone. IEICE Commun. Express 2017, 6, 530–534. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, M.; Fioranelli, F.; Borrion, H.; Griffiths, H. Multistatic Micro-Doppler Radar Feature Extraction for Classification of Unloaded/Loaded Micro-Drones. IET Radar Sonar Navig. 2017, 11, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, M.A.; Fioranelli, F.; Griffiths, H.; Torvik, B. Monostatic and Bistatic Radar Measurements of Birds and Micro-Drone. In Proceedings of the 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016. [Google Scholar]
- Huang, A.; Sévigny, P.; Balaji, B.; Rajan, S. Fundamental Frequency Estimation of HERM Lines of Drones. In Proceedings of the 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA, 28–30 April 2020; pp. 1013–1018. [Google Scholar]
- Kim, K.; Uney, M.; Mulgrew, B. Estimation of Drone Micro-Doppler Signatures via Track-Before-Detect in Array Radars. In Proceedings of the 2019 International Radar Conference (RADAR), Toulon, France, 23–27 September 2019; pp. 1–6. [Google Scholar]
- Dale, H.; Baker, C.; Antoniou, M.; Jahangir, M.; Atkinson, G.; Harman, S. SNR-Dependent Drone Classification Using Convolutional Neural Networks. IET Radar Sonar Navig. 2022, 16, 22–23. [Google Scholar] [CrossRef]
- Rahman, S.; Robertson, D.A. Classification of Drones and Birds Using Convolutional Neural Networks Applied to Radar Micro-Doppler Spectrogram Images. IET Radar Sonar Navig. 2020, 14, 653–661. [Google Scholar] [CrossRef] [Green Version]
- Musa, S.A.; Abdullah, R.; Sali, A.; Ismail, A.; Rashid, N.E.A.; Ibrahim, I.P.; Salah, A.A. A Review of Copter Drone Detection Using Radar Systems. Def. S T Tech. Bull. 2019, 12, 16–38. [Google Scholar]
- Wellig, P.; Speirs, P.; Schuepbach, C.; Oechslin, R.; Renker, M.; Boeniger, U.; Pratisto, H. Radar Systems and Challenges for C-UAV. In Proceedings of the 2018 19th International Radar Symposium (IRS), Bonn, Germany, 20–22 June 2018; pp. 1–8. [Google Scholar]
- Galati, G.; Pavan, G. Calibration of an X-Band Commercial Radar and Reflectivity Measurements in Suburban Areas. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 4–11. [Google Scholar] [CrossRef]
- Roldan, I.; del-Blanco, C.R.; Duque de Quevedo, Á.; Ibañez Urzaiz, F.; Gismero Menoyo, J.; Asensio López, A.; Berjón, D.; Jaureguizar, F.; García, N. DopplerNet: A Convolutional Neural Network for Recognising Targets in Real Scenarios Using a Persistent Range–Doppler Radar. IET Radar Sonar Navig. 2020, 14, 593–600. [Google Scholar] [CrossRef]
- de Wit, J.J.M.; Gusland, D.; Trommel, R.P. Radar Measurements for the Assessment of Features for Drone Characterization. In Proceedings of the 2020 17th European Radar Conference (EuRAD), Utrecht, The Netherlands, 10–15 January 2021; pp. 38–41. [Google Scholar]
- Park, J.; Jung, D.; Bae, K.; Park, S. Range-Doppler Map Improvement in FMCW Radar for Small Moving Drone Detection Using the Stationary Point Concentration Technique. IEEE Trans. Microw. Theory Tech. 2020, 68, 1858–1871. [Google Scholar] [CrossRef]
- Balal, N.; Richter, Y.; Pinhasi, Y. Identifying Low-RCS Targets Using Micro-Doppler High-Resolution Radar in the Millimeter Waves. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar]
- Björklund, S.; Wadströmer, N. Target Detection and Classification of Small Drones by Deep Learning on Radar Micro-Doppler. In Proceedings of the 2019 International Radar Conference (RADAR), Toulon, France, 23–27 September 2019; pp. 1–6. [Google Scholar]
- Jahangir, M.; Atkinson, G.M.; Antoniou, M.; Baker, C.J.; Sadler, J.P.; Reynolds, S.J. Measurements of Birds and Drones with L-Band Staring Radar. In Proceedings of the 2021 21st International Radar Symposium (IRS), Berlin, Germany, 21–22 June 2021; pp. 1–10. [Google Scholar]
- Zulkifli, S.; Balleri, A. Design and Development of K-Band FMCW Radar for Nano-Drone Detection. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–5. [Google Scholar]
- Blake, W.; Burger, I. Small Drone Detection Using Airborne Weather Radar. In Proceedings of the 2021 IEEE Radar Conference (RadarConf21), Atlanta, GA, USA, 7–14 May 2021; pp. 1–4. [Google Scholar]
- Palamà, R.; Fioranelli, F.; Ritchie, M.; Inggs, M.; Lewis, S.; Griffiths, H. Measurements and Discrimination of Drones and Birds with a Multi-Frequency Multistatic Radar System. IET Radar Sonar Navig. 2021, 15, 841–852. [Google Scholar] [CrossRef]
- Mizushima, T.; Nakamura, R.; Hadama, H. Reflection Characteristics of Ultra-Wideband Radar Echoes from Various Drones in Flight. In Proceedings of the 2020 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNeT), San Antonio, TX, USA, 26–29 January 2020; pp. 30–33. [Google Scholar]
- de Wit, J.J.M.; Harmanny, R.I.A.; Molchanov, P. Radar Micro-Doppler Feature Extraction Using the Singular Value Decomposition. In Proceedings of the 2014 International Radar Conference, Lille, France, 13–17 October 2014; pp. 1–6. [Google Scholar]
- Skolnik, M. Radar Handbook, Third Edition; McGraw-Hill Education: New York, NY, USA, 2008. [Google Scholar]
- Gong, J.; Yan, J.; Li, D.; Chen, R.; Tian, F.; Yan, Z. Theoretical and Experimental Analysis of Radar Micro-Doppler Signature Modulated by Rotating Blades of Drones. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1659–1663. [Google Scholar] [CrossRef]
- Martin, J.; Mulgrew, B. Analysis of the Theoretical Radar Return Signal Form Aircraft Propeller Blades. In Proceedings of the IEEE International Conference on Radar, Arlington, VA, USA, 7–10 May 1990; pp. 569–572. [Google Scholar]
- Chen, V. The Micro-Doppler Effect in Radar; Artech House: Norwood, MA, USA, 2011; ISBN 9781608070572. [Google Scholar]
- Molchanov, P.; Harmanny, R.I.A.; De Wit, J.J.M.; Egiazarian, K.; Astola, J. Classification of Small UAVs and Birds by Micro-Doppler Signatures. J. Microw. Wirel. Technol. 2014, 6, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.K.; Kang, H.; Park, S. Experimental Analysis of Small Drone Polarimetry Based on Micro-Doppler Signature. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1670–1674. [Google Scholar] [CrossRef]
- Gong, J.; Yan, J.; Li, D. Comparison of Micro-Doppler Signatures Registered Using RBM of Helicopters and WSM of Vehicles. IET Radar Sonar Navig. 2019, 13, 1951–1955. [Google Scholar] [CrossRef]
- Gong, J.; Yan, J.; Li, D. The Radar Detection Method Based on Detecting Signal to Clutter Ratio (SCR) in the Spectrum. In Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 1876–1882. [Google Scholar]
Class | 1 | 1 | 1 |
---|---|---|---|
Category | micro | mini | small |
Weight (kg) | <2 | 2–20 | 20–150 |
Operational altitude (m) | 90 | 1000 | 1500 |
Mission radius (km) | 5 | 25 | 50–100 |
Payload (kg) | <0.5 | 50–100 | 5–50 |
Drone Type | Multi-Rotor | Hybrid VTOL Fixed-Wing |
---|---|---|
Model | Phantom 4 | TX25A |
Manufacturer | DJI Inc. | Harryskydream Inc. |
Take-off weight | 1.38 kg | 26 kg |
Body size | 0.40 m | 1.97 m |
Wing span | 0.40 m | 3.60 m |
Rotor number | 4 | 5 |
Blade length | 20 cm | 30 cm |
Max cruise speed | 72 km/h | 115 km/h |
Contents | TX25A | DJI Phantom 4 |
---|---|---|
Body size | 0.40 m | 1.97 m |
Signal amplitudes | 235.62 | 98.96 |
SCR | 13.29 dB | 11.28 dB |
Speed | 16 m/s | 8.5 m/s |
Rotating rate | 40 rps | 80 rps |
JEM peaks | 3 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, J.; Li, D.; Yan, J.; Hu, H.; Kong, D. Comparison of Radar Signatures from a Hybrid VTOL Fixed-Wing Drone and Quad-Rotor Drone. Drones 2022, 6, 110. https://doi.org/10.3390/drones6050110
Gong J, Li D, Yan J, Hu H, Kong D. Comparison of Radar Signatures from a Hybrid VTOL Fixed-Wing Drone and Quad-Rotor Drone. Drones. 2022; 6(5):110. https://doi.org/10.3390/drones6050110
Chicago/Turabian StyleGong, Jiangkun, Deren Li, Jun Yan, Huiping Hu, and Deyong Kong. 2022. "Comparison of Radar Signatures from a Hybrid VTOL Fixed-Wing Drone and Quad-Rotor Drone" Drones 6, no. 5: 110. https://doi.org/10.3390/drones6050110
APA StyleGong, J., Li, D., Yan, J., Hu, H., & Kong, D. (2022). Comparison of Radar Signatures from a Hybrid VTOL Fixed-Wing Drone and Quad-Rotor Drone. Drones, 6(5), 110. https://doi.org/10.3390/drones6050110