Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = JEM signals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2042 KB  
Article
A Cross-Working Condition-Bearing Diagnosis Method Based on Image Fusion and a Residual Network Incorporating the Kolmogorov–Arnold Representation Theorem
by Ziyi Tang, Xinhao Hou, Xin Wang and Jifeng Zou
Appl. Sci. 2024, 14(16), 7254; https://doi.org/10.3390/app14167254 - 17 Aug 2024
Cited by 7 | Viewed by 2206
Abstract
With the optimization and advancement of industrial production and manufacturing, the application scenarios of bearings have become increasingly diverse and highly coupled. This complexity poses significant challenges for the extraction of bearing fault features, consequently affecting the accuracy of cross-condition fault diagnosis methods. [...] Read more.
With the optimization and advancement of industrial production and manufacturing, the application scenarios of bearings have become increasingly diverse and highly coupled. This complexity poses significant challenges for the extraction of bearing fault features, consequently affecting the accuracy of cross-condition fault diagnosis methods. To improve the extraction and recognition of fault features and enhance the diagnostic accuracy of models across different conditions, this paper proposes a cross-condition bearing diagnosis method. This method, named MCR-KAResNet-TLDAF, is based on image fusion and a residual network that incorporates the Kolmogorov–Arnold representation theorem. Firstly, the one-dimensional vibration signals of the bearing are processed using Markov transition field (MTF), continuous wavelet transform (CWT), and recurrence plot (RP) methods, converting the resulting images to grayscale. These grayscale images are then multiplied by corresponding coefficients and fed into the R, G, and B channels for image fusion. Subsequently, fault features are extracted using a residual network enhanced by the Kolmogorov–Arnold representation theorem. Additionally, a domain adaptation algorithm combining multiple kernel maximum mean discrepancy (MK-MMD) and conditional domain adversarial network with entropy conditioning (CDAN+E) is employed to align the source and target domains, thereby enhancing the model’s cross-condition diagnostic accuracy. The proposed method was experimentally validated on the Case Western Reserve University (CWRU) dataset and the Jiangnan University (JUN) dataset, which include the 6205-2RS JEM SKF, N205, and NU205 bearing models. The method achieved accuracy rates of 99.36% and 99.889% on the two datasets, respectively. Comparative experiments from various perspectives further confirm the superiority and effectiveness of the proposed model. Full article
Show Figures

Figure 1

15 pages, 3522 KB  
Article
Detection of Micro-Doppler Signals of Drones Using Radar Systems with Different Radar Dwell Times
by Jiangkun Gong, Jun Yan, Deren Li and Deyong Kong
Drones 2022, 6(9), 262; https://doi.org/10.3390/drones6090262 - 19 Sep 2022
Cited by 21 | Viewed by 16626
Abstract
Not any radar dwell time of a drone radar is suitable for detecting micro-Doppler (or jet engine modulation, JEM) produced by the rotating blades in radar signals of drones. Theoretically, any X-band drone radar system should detect micro-Doppler of blades because of the [...] Read more.
Not any radar dwell time of a drone radar is suitable for detecting micro-Doppler (or jet engine modulation, JEM) produced by the rotating blades in radar signals of drones. Theoretically, any X-band drone radar system should detect micro-Doppler of blades because of the micro-Doppler effect and partial resonance effect. Yet, we analyzed radar data detected by three radar systems with different radar dwell times but similar frequency and velocity resolution, including Radar−α, Radar−β, and Radar−γ with radar dwell times of 2.7 ms, 20 ms, and 89 ms, respectively. The results indicate that Radar−β is the best radar for detecting micro-Doppler (i.e., JEM signals) produced by the rotating blades of a quadrotor drone, DJI Phantom 4, because the detection probability of JEM signals is almost 100%, with approximately 2 peaks, whose magnitudes are similar to that of the body Doppler. In contrast, Radar−α can barely detect any micro-Doppler, and Radar−γ detects weak micro-Doppler signals, whose magnitude is only 10% of the body Doppler’s. Proper radar dwell time is the key to micro-Doppler detection. This research provides an idea for designing a cognitive micro-Doppler radar by changing radar dwell time for detecting and tracking micro-Doppler signals of drones. Full article
(This article belongs to the Special Issue Advances in UAV Detection, Classification and Tracking)
Show Figures

Figure 1

13 pages, 1720 KB  
Article
Comparison of Radar Signatures from a Hybrid VTOL Fixed-Wing Drone and Quad-Rotor Drone
by Jiangkun Gong, Deren Li, Jun Yan, Huiping Hu and Deyong Kong
Drones 2022, 6(5), 110; https://doi.org/10.3390/drones6050110 - 27 Apr 2022
Cited by 11 | Viewed by 7139
Abstract
Current studies rarely mention radar detection of hybrid vertical take-off and landing (VTOL) fixed-wing drones. We investigated radar signals of an industry-tier VTOL fixed-wing drone, TX25A, compared with the radar detection results of a quad-rotor drone, DJI Phantom 4. We used an X-band [...] Read more.
Current studies rarely mention radar detection of hybrid vertical take-off and landing (VTOL) fixed-wing drones. We investigated radar signals of an industry-tier VTOL fixed-wing drone, TX25A, compared with the radar detection results of a quad-rotor drone, DJI Phantom 4. We used an X-band pulse-Doppler phased array radar to collect tracking radar data of the two drones in a coastal area near the Yellow Sea in China. The measurements indicate that TX25A had double the values of radar cross-section (RCS) and flying speed and a 2 dB larger signal-to-clutter ratio (SCR) than DJI Phantom 4. The radar signals of both drones had micro-Doppler signals or jet engine modulation (JEM) produced by the lifting rotor blades, but the Doppler modulated by the puller rotor blades of TX25A was undetectable. JEM provides radar signatures such as the rotating rate, modulated by the JEM frequency spacing interval and the number of blades for radar automatic target recognition (ATR), but also interferes with the radar tracking algorithm by suppressing the body Doppler. This work provides an a priori investigation of new VTOL fixed-wing drones and may inspire future research. Full article
Show Figures

Figure 1

17 pages, 5674 KB  
Article
A Novel Consistent Quality Driven for JEM Based Distributed Video Coding
by Dinh Trieu Duong, Huy Phi Cong and Xiem Hoang Van
Algorithms 2019, 12(7), 130; https://doi.org/10.3390/a12070130 - 28 Jun 2019
Cited by 6 | Viewed by 4120
Abstract
Distributed video coding (DVC) is an attractive and promising solution for low complexity constrained video applications, such as wireless sensor networks or wireless surveillance systems. In DVC, visual quality consistency is one of the most important issues to evaluate the performance of a [...] Read more.
Distributed video coding (DVC) is an attractive and promising solution for low complexity constrained video applications, such as wireless sensor networks or wireless surveillance systems. In DVC, visual quality consistency is one of the most important issues to evaluate the performance of a DVC codec. However, it is the fact that the quality of the decoded frames that is achieved in most recent DVC codecs is not consistent and it is varied with high quality fluctuation. In this paper, we propose a novel DVC solution named Joint exploration model based DVC (JEM-DVC) to solve the problem, which can provide not only higher performance as compared to the traditional DVC solutions, but also an effective scheme for the quality consistency control. We first employ several advanced techniques that are provided in the Joint exploration model (JEM) of the future video coding standard (FVC) in the proposed JEM-DVC solution to effectively improve the performance of JEM-DVC codec. Subsequently, for consistent quality control, we propose two novel methods, named key frame quantization (KF-Q) and Wyner-Zip frame quantization (WZF-Q), which determine the optimal values of the quantization parameter (QP) and quantization matrix (QM) applied for the key and WZ frame coding, respectively. The optimal values of QP and QM are adaptively controlled and updated for every key and WZ frames to guarantee the consistent video quality for the proposed codec unlike the conventional approaches. Our proposed JEM-DVC is the first DVC codec in literature that employs the JEM coding technique, and then all of the results that are presented in this paper are new. The experimental results show that the proposed JEM-DVC significantly outperforms the relevant DVC benchmarks, notably the DISCOVER DVC and the recent H.265/HEVC based DVC, in terms of both Peak signal-to-noise ratio (PSNR) performance and consistent visual quality. Full article
Show Figures

Figure 1

Back to TopTop