Applications of Unmanned Aerial Vehicles to Survey Mesocarnivores
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Equipment
2.3. Sampling Protocol
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Terborgh, J.; Estes, J.A.; Paquet, P.; Ralls, K.; Boyd-Herger, D.; Miller, B.J.; Noss, R.F. The Role of Top Carnivores in Regulating Terrestrial Ecosystems; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- Laliberte, A.S.; Ripple, W.J. Range contractions of North American carnivores and ungulates. Bioscience 2004, 54, 123–138. [Google Scholar] [CrossRef]
- Crooks, K.R.; Soule, M.E. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 1999, 400, 563–566. [Google Scholar] [CrossRef]
- Ray, J.; Redford, K.H.; Steneck, R.; Berger, J. Large Carnivores and the Conservation of Biodiversity; Island Press: Washington, DC, USA, 12013. [Google Scholar]
- Gompper, M.E.; Kays, R.W.; Ray, J.C.; Lapoint, S.D.; Bogan, D.A.; Cryan, J.R. A comparison of noninvasive techniques to survey carnivore communities in northeastern North America. Wildl. Soc. Bull. 2006, 34, 1142–1151. [Google Scholar] [CrossRef]
- Nordström, M.; Korpimäki, E. Effects of island isolation and feral mink removal on bird communities on small islands in the Baltic Sea. J. Anim. Ecol. 2004, 73, 424–433. [Google Scholar] [CrossRef] [Green Version]
- Cirovic, D.; Penezic, A.; Krofel, M. Jackals as cleaners: Ecosystem services provided by a mesocarnivore in human-dominated landscapes. Biol. Conserv. 2016, 199, 51–55. [Google Scholar] [CrossRef]
- Long, R.A.; Donovan, T.M.; Mackay, P.; Zielinski, W.J.; Buzas, J.S. Comparing scat detection dogs, cameras, and hair snares for surveying carnivores. J. Wildl. Manag. 2007, 71, 2018–2025. [Google Scholar] [CrossRef]
- Barrett, R.H. Smoked aluminum track plots for determining furbearer distribution and relative abundance. Calif. Fish Game 1983, 69, 188–190. [Google Scholar]
- Hamel, S.; Killengreen, S.T.; Henden, J.A.; Eide, N.E.; Roed-Eriksen, L.; Ims, R.A.; Yoccoz, N.G. Towards good practice guidance in using camera-traps in ecology: Influence of sampling design on validity of ecological inferences. Methods Ecol. Evol. 2013, 4, 105–113. [Google Scholar] [CrossRef]
- O’Connell, A.F.; Talancy, N.W.; Bailey, L.L.; Sauer, J.R.; Cook, R.; Gilbert, A.T. Estimating site occupancy and detection probability parameters for meso- and large mammals in a coastal ecosystem. J. Wildl. Manag. 2006, 70, 1625–1633. [Google Scholar] [CrossRef]
- O’Neil, E.; Swanson, B.J. Using Track-plate Footprints in Fisher Mark Recapture Population Estimation. Am. Midl. Nat. 2010, 164, 165–171. [Google Scholar] [CrossRef]
- Foresman, K.R.; Pearson, D.E. Comparison of proposed survey procedures for detection of forest carnivores. J. Wildl. Manag. 1998, 62, 1217–1226. [Google Scholar] [CrossRef]
- Depue, J.E.; Ben-David, M. Hair sampling techniques for River Otters. J. Wildl. Manag. 2007, 71, 671–674. [Google Scholar] [CrossRef]
- Elsey, R.M.; Trosclair, P.L. The use of an unmanned aerial vehicle to locate alligator nests. Southeast. Nat. 2016, 15, 76–82. [Google Scholar] [CrossRef]
- Bergenas, J.; Stohl, R.; Georgieff, A. The other side of drones: Saving wildlife in Africa and managing global crime. Conflict Trends 2013, 2013, 3–9. [Google Scholar]
- Chabot, D.; Bird, D.M. Evaluation of an off-the-shelf unmanned aircraft system for surveying flocks of geese. Waterbirds 2012, 35, 170–174. [Google Scholar] [CrossRef]
- Chabot, D.; Bird, D.M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in? J. Unmanned Veh. Syst. 2015, 3, 137–155. [Google Scholar] [CrossRef] [Green Version]
- Sarda-Palomera, F.; Bota, G.; Vinolo, C.; Pallares, O.; Sazatornil, V.; Brotons, L.; Gomariz, S.; Sarda, F. Fine-scale bird monitoring from light unmanned aircraft systems. Ibis 2012, 154, 177–183. [Google Scholar] [CrossRef]
- Weissensteiner, M.H.; Poelstra, J.W.; Wolf, J.B.W. Low-budget ready-to-fly unmanned aerial vehicles: An effective tool for evaluating the nesting status of canopy-breeding bird species. J. Avian Biol. 2015, 46, 425–430. [Google Scholar] [CrossRef]
- Flamm, R.O.; Owen, E.C.G.; Owen, C.F.W.; Wells, R.S.; Nowacek, D. Aerial videogrammetry from a tethered airship to assess manatee life-stage structure. Mar. Mamm. Sci. 2000, 16, 617–630. [Google Scholar] [CrossRef]
- Koski, W.R.; Gamage, G.; Davis, A.R.; Mathews, T.; LeBlanc, B.; Ferguson, S.H. Evaluation of UAS for photographic re-identification of bowhead whales, Balaena mysticetus. J. Unmanned Veh. Syst. 2015, 3, 22–29. [Google Scholar] [CrossRef]
- Nilssen, K.T.; Storvold, R.; Stødle, D.; Solbø, S.A.; Johansen, K.-S.; Poltermann, M.; Haug, T. Testing UAVs to Perform Aerial Photographic Survey of Harp and Hooded Seals in the West Ice Area; Havforskningsinstituttet: Bergen, Norway, 2014. [Google Scholar]
- Hodgson, A.; Peel, D.; Kelly, N. Unmanned aerial vehicles for surveying marine fauna: Assessing detection probability. Ecol. Appl. 2017, 27, 1253–1267. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.J.; Hinke, J.T.; Perryman, W.L.; Goebel, M.E.; LeRoi, D.J. An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- Kastberger, G.; Stachl, R. Infrared imaging technology and biological applications. Behav. Res. Methods Instrum. Comput. 2003, 35, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Collier, B.A.; Ditchkoff, S.S.; Raglin, J.B.; Smith, J.M. Detection probability and sources of variation in white-tailed deer spotlight surveys. J. Wildl. Manag. 2007, 71, 277–281. [Google Scholar] [CrossRef]
- Ambrosia, V.G.; Wegener, S.S.; Sullivan, D.V.; Buechel, S.W.; Dunagan, S.E.; Brass, J.A.; Stoneburner, J.; Schoenung, S.M. Demonstrating UAV-acquired real-time thermal data over fires. Photogramm. Eng. Remote Sens. 2003, 69, 391–402. [Google Scholar] [CrossRef]
- Rudol, P.; Doherty, P. Human body detection and geolocalization for UAV search and rescue missions using color and thermal imagery. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008; pp. 1–8. [Google Scholar]
- Israel, M. A UAV-based roe deer fawn detection system. Int. Arch. Photogramm. Remote Sens. 2011, 38, 1–5. [Google Scholar] [CrossRef]
- Haschberger, P.; Bundschuh, M.; Tank, V. Infrared sensor for the detection and protection of wildlife. Opt. Eng. 1996, 35, 882–889. [Google Scholar] [CrossRef]
- Christiansen, P.; Steen, A.K.; Jørgensen, N.R.; Karstoft, H. Automated Detection and Recognition of Wildlife Using Thermal Cameras. Sensors 2014, 14, 13778–13793. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.; Hensler, J.; Alsalam, B.; Gonzalez, L.F. Autonomous UAVs wildlife detection using thermal imaging, predictive navigation and computer vision. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; pp. 1–8. [Google Scholar]
- Witczuk, J.; Pagacz, S.; Zmarz, A.; Cypel, M. Exploring the feasibility of unmanned aerial vehicles and thermal imaging for ungulate surveys in forests—Preliminary results. Int. J. Remote Sens. 2018, 39, 5504–5521. [Google Scholar] [CrossRef]
- Seymour, A.C.; Dale, J.; Hammill, M.; Halpin, P.N.; Johnston, D.W. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Garrettson, P.R.; Rohwer, F.C. Effects of mammalian predator removal on production of upland-nesting ducks in North Dakota. J. Wildl. Manag. 2001, 65, 398–405. [Google Scholar] [CrossRef]
- Amundson, C.L.; Pieron, M.R.; Arnold, T.W.; Beudoin, L.A. The effects of predator removal on Mallard production and population change in northeastern North Dakota. J. Wildl. Manag. 2013, 77, 143–152. [Google Scholar] [CrossRef]
- Kiel, W.H.; Hawkins, A.S.; Perret, N.G. Waterfowl Habitat Trends in the Aspen Parkland of Manitoba; Information Canada: Ottawa, ON, USA, 1972. [Google Scholar]
- Urban, D. Raccoon Populations, Movement Patterns, and Predation on a Managed Waterfowl Marsh. J. Wildl. Manag. 1970, 34, 372–382. [Google Scholar] [CrossRef]
- Brack, I.V.; Kindel, A.; Oliveira, L.F.B. Detection errors in wildlife abundance estimates from Unmanned Aerial Systems (UAS) surveys: Synthesis, solutions, and challenges. Methods Ecol. Evol. 2018, 9, 1864–1873. [Google Scholar] [CrossRef]
- Jordan, M.J.; Barrett, R.H.; Purcell, K.L. Camera trapping estimates of density and survival of fishers Martes Pennanti. Widlife Biol. 2011, 17, 266–277. [Google Scholar] [CrossRef]
- Carrlson, K.M.; Gue, C.T.; Loesch, C.R.; Walker, J.A. Assessment of repeat-visit surveys as a viable method for estimating brood abundance at the 10.4-km2 scale. Wildl. Soc. Bull. 2018, 41, 72–77. [Google Scholar] [CrossRef]
(a) | |||||
Round 1 | Trapped | Control | Total | ||
Elphinstone | Minnedosa | Odanah | Raven Lake | ||
American badger | 0 | 1 | 2 | 0 | 3 |
coyote | 0 | 0 | 3 | 1 | 4 |
red fox | 2 | 0 | 1 | 3 | 6 |
striped skunk | 0 | 1 | 1 | 2 | 4 |
Total | 2 | 2 | 7 | 6 | 17 |
(b) | |||||
Round 2 | Trapped | Control | Total | ||
Elphinstone | Minnedosa | Odanah | Raven Lake | ||
coyote | 0 | 1 | 0 | 1 | 2 |
red fox | 1 | 0 | 3 | 3 | 7 |
striped skunk | 0 | 1 | 0 | 1 | 2 |
American mink | 1 | 0 | 0 | 0 | 1 |
raccoon | 0 | 0 | 1 | 0 | 1 |
weasel | 0 | 1 | 0 | 0 | 1 |
feral cat | 1 | 0 | 0 | 0 | 1 |
Total | 3 | 3 | 4 | 5 | 15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bushaw, J.D.; Ringelman, K.M.; Rohwer, F.C. Applications of Unmanned Aerial Vehicles to Survey Mesocarnivores. Drones 2019, 3, 28. https://doi.org/10.3390/drones3010028
Bushaw JD, Ringelman KM, Rohwer FC. Applications of Unmanned Aerial Vehicles to Survey Mesocarnivores. Drones. 2019; 3(1):28. https://doi.org/10.3390/drones3010028
Chicago/Turabian StyleBushaw, Jacob D., Kevin M. Ringelman, and Frank C. Rohwer. 2019. "Applications of Unmanned Aerial Vehicles to Survey Mesocarnivores" Drones 3, no. 1: 28. https://doi.org/10.3390/drones3010028
APA StyleBushaw, J. D., Ringelman, K. M., & Rohwer, F. C. (2019). Applications of Unmanned Aerial Vehicles to Survey Mesocarnivores. Drones, 3(1), 28. https://doi.org/10.3390/drones3010028