Optimization of Protein Precipitation for High-Loading Drug Delivery Systems for Immunotherapeutics †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Protein Precipitation
2.3. PLGA Nanoprecipitation
2.4. PLGA Solubility
2.5. Dynamic Light Scattering
2.6. Encapsulation Efficiency and Protein Activity
3. Results and Discussion
3.1. Protein Precipitation
3.2. PLGA Precipitation
3.3. Encapuslation
4. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Kintzing, J.R.; Filsinger Interrante, M.V.; Cochran, J.R. Emerging Strategies for Developing Next-Generation Protein Therapeutics for Cancer Treatment. Trends Pharmacol. Sci. 2016, 37, 993–1008. [Google Scholar] [CrossRef]
- Kontermann, R.E. Strategies for extended serum half-life of protein therapeutics. Curr. Opin. Biotechnol. 2011, 22, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C 2019, 98, 1252–1276. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Li, Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 2013, 9, 1521–1532. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.P.M.; Chen, A.L.; Foster, A.; Drezek, R. In vivo biodistribution of nanoparticles. Nanomedicine 2011, 6, 815–835. [Google Scholar] [CrossRef] [PubMed]
- Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 1989, 55, R1–R4. [Google Scholar] [CrossRef]
- Lebouille, J.G.J.L.; Stepanyan, R.; Slot, J.J.M.; Cohen Stuart, M.A.; Tuinier, R. Nanoprecipitation of polymers in a bad solvent. Colloids Surf. A Physicochem. Eng. Asp. 2013, 460, 225–235. [Google Scholar] [CrossRef]
- Morales-Cruz, M.; Flores-Fernández, G.M.; Morales-Cruz, M.; Orellano, E.A.; Rodriguez-Martinez, J.A.; Ruiz, M.; Griebenow, K. Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres. Results Pharma Sci. 2012, 2, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Tarhini, M.; Benlyamani, I.; Hamdani, S.; Agusti, G.; Fessi, H.; Greige-Gerges, H.; Bentaher, A.; Elaissari, A. Protein-based nanoparticle preparation via nanoprecipitation method. Materials 2018, 11, 394. [Google Scholar] [CrossRef] [PubMed]
- Paik, S.Y.R.; Nguyen, H.H.; Ryu, J.; Che, J.H.; Kang, T.S.; Lee, J.K.; Song, C.W.; Ko, S. Robust size control of bovine serum albumin (BSA) nanoparticles by intermittent addition of a desolvating agent and the particle formation mechanism. Food Chem. 2013, 141, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Von Storp, B.; Engel, A.; Boeker, A.; Ploeger, M.; Langer, K. Albumin nanoparticles with predictable size by desolvation procedure. J. Microencapsul. 2012, 29, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Rahimnejad, M.; Najafpour, G.; Bakeri, G. Investigation and modeling effective parameters influencing the size of BSA protein nanoparticles as colloidal carrier. Colloids Surf. A Physicochem. Eng. Asp. 2012, 412, 96–100. [Google Scholar] [CrossRef]
- Weber, C.; Coester, C.; Kreuter, J.; Langer, K. Desolvation process and surface characterisation of protein nanoparticles. Int. J. Pharm. 2000, 194, 91–102. [Google Scholar] [CrossRef]
- Langer, K.; Anhorn, M.G.; Steinhauser, I.; Dreis, S.; Celebi, D.; Schrickel, N.; Faust, S.; Vogel, V. Human serum albumin (HSA) nanoparticles: Reproducibility of preparation process and kinetics of enzymatic degradation. Int. J. Pharm. 2008, 347, 109–117. [Google Scholar] [CrossRef]
- Langer, K.; Balthasar, S.; Vogel, V.; Dinauer, N.; Von Briesen, H.; Schubert, D. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int. J. Pharm. 2003, 257, 169–180. [Google Scholar] [CrossRef]
Protein | Concentration (mg/mL) | z-Average (nm) | pdi |
---|---|---|---|
BSA | 10 | 35.2 ± 0.2 | 0.18 ± 0.035 |
15 | 46.2 ± 7.4 | 0.13 ± 0.055 | |
20 | 54.3 ± 1.5 | 0.15 ± 0.019 | |
25 | 67.0 ± 4.1 | 0.13 ± 0.032 | |
amylase | 2 | 133.7 ± 4.2 | 0.013 ± 0.007 |
PLGA | Concentration (mg/mL) | ACN (µL) | H2O (µL) | Max H2O (%) |
---|---|---|---|---|
5002 | 190 | 100 | 20 | 16.67 |
95 | 200 | 40 | 16.67 | |
47.5 | 400 | 90 | 18.37 | |
5002A | 190 | 100 | 20 | 16.67 |
95 | 200 | 40 | 16.67 | |
47.5 | 400 | 90 | 18.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelemans, L.C.; Buzgo, M.; Simaite, A. Optimization of Protein Precipitation for High-Loading Drug Delivery Systems for Immunotherapeutics. Proceedings 2021, 78, 29. https://doi.org/10.3390/IECP2020-08683
Nelemans LC, Buzgo M, Simaite A. Optimization of Protein Precipitation for High-Loading Drug Delivery Systems for Immunotherapeutics. Proceedings. 2021; 78(1):29. https://doi.org/10.3390/IECP2020-08683
Chicago/Turabian StyleNelemans, Levi Collin, Matej Buzgo, and Aiva Simaite. 2021. "Optimization of Protein Precipitation for High-Loading Drug Delivery Systems for Immunotherapeutics" Proceedings 78, no. 1: 29. https://doi.org/10.3390/IECP2020-08683
APA StyleNelemans, L. C., Buzgo, M., & Simaite, A. (2021). Optimization of Protein Precipitation for High-Loading Drug Delivery Systems for Immunotherapeutics. Proceedings, 78(1), 29. https://doi.org/10.3390/IECP2020-08683