Assessment on the Potential of Multispectral and Hyperspectral Datasets for Land Use/Land Cover Classification †
Abstract
:1. Introduction
- To focus on using multispectral and hyperspectral dataset for LULC classification through standard dimensionality reduction techniques.
- To assess the classified results and theircorresponding accuracies obtained using a supervised algorithm for a benchmark dataset representing a core urban area.
2. Related Work
3. Materials and Methods
3.1. Study Area
3.2. Datasets
3.3. Methodology
3.3.1. Dimensionality Reduction
3.3.2. SNAP Processing
3.3.3. Transformation of Dimensionally Reduced AVIRIS NG to Sentinel 2–Like Dataset
4. Results and Discussion
4.1. Random Forest Classifier
4.2. Accuracy Assessment
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, T.X.; Su, J.Y.; Liu, C.J.; Chen, W.H. Potential Bands of Sentinel-2 A Satellite for Classification Problemsin Precision Agriculture. Int. J. Autom. Comput. 2018, 16, 16–26. [Google Scholar] [CrossRef]
- Nivedita Priyadarshini, K.; Kumar, M.; Rahaman, S.A.; Nitheshnirmal, S. A Comparative Study of Advanced Land Use/Land Cover Classification Algorithms Using Sentinel-2 Data. In Proceedings of the 2018 ISPRSTCV Mid-term Symposium “Geospatial Technology–Pixel to People”, Dehradun, India, 20–23 November 2018; pp. 665–670. [Google Scholar] [CrossRef]
- Weinmann, M.; Maier, P.M.; Florath, J.; Weidner, U. Investigations on the potential of hyperspectral and Sentinel-2 data for land-cover/land-use classification. In Proceedings of the 2018 ISPRSTCI Mid-Term Symposium “Innovative Sensing–From Sensors to Methods and Applications”, Karlsruhe, Germany, 10–12 October 2018; pp. 155–162. [Google Scholar] [CrossRef]
- Segl, K.; Guanter, L.; Kaufmann, H.; Schubert, J.; Kaiser, S.; Sang, B.; Hofer, S. Simulation of spatial sensor characteristics in the context of the EnMAP hyperspectral mission. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3046–3054. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Van Der Meer, B. Accuracy assessments of hyperspectral wave band performance for vegetation analysis applications. Remote Sens Env. 2004, 91, 354–376. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [Google Scholar] [CrossRef]
- Huang, X.; Han, X.; Zhang, L.; Gong, J.; Liao, W.; Benediktsson, J.A. Generalized Differential Morphological Profiles for Remote Sensing Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1736–1751. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 2014, 31, 45–54. [Google Scholar] [CrossRef]
- Eismann, M.T. Hyperspectral Image Classification. In Hyperspectral Remote Sensing; SPIE digital library: Bellingham, WA, USA, 2012. [Google Scholar] [CrossRef]
- Frassy, F.; Dalla Via, G.; Maianti, P.; Marchesi, A.; Nodari, F.R.; Gianinetto, M. Minimum noise fraction transform for improving the classification of airborne hyperspectral data: Two case studies. In Proceedings of the 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Gainesville, FL, USA, 26–28 June 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Plaza, A.; Martínez, P.; Plaza, J.; Pérez, R. Spectral analysis of hyperspectral image data. In Proceedings of the Advances in Technique for Analysis of Remotely Sensed Data, IEEE Workshop, Greenbelt, MD, USA, 2003; pp. 298–307. [Google Scholar] [CrossRef]
- Iordache, M.-D.; Bioucas-Dias, J.M.; Plaza, A. Sparse unmixing of hyperspectral data. Geoscience and Remote Sensing. IEEE Trans. 2011, 49, 2014–2039. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. Isprs J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral datain terms of image quality with implications for noise removal. Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef]
MNF | Eigen Values |
---|---|
1 | 9.5014 |
2 3 4 5 6 | 6.5218 4.7629 4.3128 3.7146 3.4232 |
Classes | AVIRIS NG | Sentinel 2 | ||||
---|---|---|---|---|---|---|
Accuracy | Precision | Correlation | Accuracy | Precision | Correlation | |
Road | 93.9 | 82.3 | 82.6 | 84.6 | 60.1 | 61.1 |
Greenery Open Space Barren Land Urban | 97.7 91.6 91.8 96 | 94 78.4 79.5 93.4 | 92.9 76.1 75.7 87.6 | 94.3 90.8 92.8 80.5 | 85.2 76.7 81.3 51.5 | 83.3 73.9 79.2 47.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priyadarshini, K.N.; Sivashankari, V.; Shekhar, S.; Balasubramani, K. Assessment on the Potential of Multispectral and Hyperspectral Datasets for Land Use/Land Cover Classification. Proceedings 2019, 24, 12. https://doi.org/10.3390/IECG2019-06211
Priyadarshini KN, Sivashankari V, Shekhar S, Balasubramani K. Assessment on the Potential of Multispectral and Hyperspectral Datasets for Land Use/Land Cover Classification. Proceedings. 2019; 24(1):12. https://doi.org/10.3390/IECG2019-06211
Chicago/Turabian StylePriyadarshini, K. Nivedita, V. Sivashankari, Sulochana Shekhar, and K. Balasubramani. 2019. "Assessment on the Potential of Multispectral and Hyperspectral Datasets for Land Use/Land Cover Classification" Proceedings 24, no. 1: 12. https://doi.org/10.3390/IECG2019-06211