
  

Proceedings 2019, 24, 12; doi: 10.3390/IECG2019-06211 www.mdpi.com/journal/proceedings 

Proceedings 

Assessment on the Potential of Multispectral and 
Hyperspectral Datasets for Land Use/Land Cover 
Classification † 

K. Nivedita Priyadarshini *, V. Sivashankari, Sulochana Shekhar and K. Balasubramani 

Department of Geography, School of Earth Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, 
Tamil Nadu, India; shivaavettri@gmail.com (V.S.); sulochana@cutn.ac.in (S.S.); geobalas@gmail.com (K.B.) 
* Correspondence: nivi.darshini@yahoo.com; Tel.: +91-809-814-6588 
† Presented at the 2nd International Electronic Conference on Geosciences, 8–15 June 2019; Available online: 

https://iecg2019.sciforum.net/. 

Published: 5 June 2019 

Abstract: Land use/land cover (LULC) is a significant factor which plays a vital role in defining an 
urban ecosystem. Interpretations of LULC are eased in recent times by utilizing hyperspectral and 
multispectral datasets obtained from various platforms. An attempt is made to comparatively 
assess the potentiality of AVIRIS NG with Sentinel 2 data through applied classification techniques 
for Kalaburagi urban sphere. Spectral responses of both datasets were analyzed to derive 
reflectance spectra. A standard supervised classification algorithm associated with dimensionality 
reduction techniques is applied. For performance evaluation, results are validated to check which 
dataset outperforms well and provides better accuracy. 
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1. Introduction 

Land Use/Land Cover (LULC) is a salient element used in explication of terrain features. 
Technical advancements in spatial sciences havefavored the researches to utilize remotely sensed 
imageries for extraction of land cover information. Potential remote sensing methods are highly 
capable of providingdatasets with high spatial, spectral, and temporal resolutions that promote 
further analysis [1,2]. Multispectral and hyperspectral datasets obtained from spaceborne and 
airborne platforms yield possible results when used for numerous geospatial use cases. Reflectance 
properties from the Earth’s surfacedistributed among the spectrum bands are taken more into 
consideration. The classification task in general requires precise bands exposing apparent land cover 
features. Though hyperspectral and multispectral datasets provide more detailed information, 
spectral bands in the vicinity remain strongly correlated, thus revealing a high degree of redundancy 
[3]. Selection of appropriate bands is of prime importance in order to reduce irrelevant information. 
Also, the acquired hyperspectral data have to be transformed like the multispectral dataset for 
accurate classification. The results are compared to check the effectiveness of applied classification 
for both hyperspectral and multispectral datasets [4–7].  

This study briefly describes how well the remote sensor datasets respond to the conventional 
supervised classification algorithm. The aim of this study is achieved using the following objectives 
that are mentioned below. 

• To focus on using multispectral and hyperspectral dataset for LULC classification through 
standard dimensionality reduction techniques. 
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• To assess the classified results and theircorresponding accuracies obtained using a supervised 
algorithm for a benchmark dataset representing a core urban area. 

2. Related Work 

Hyperspectral image classification is achieved based upon the reflectance values distributed 
along spectral bands. On the other hand, multispectral imageries render more information in fewer 
bands while also retaining the accuracy of the image [8,9]. Dimensionality reduction techniques like 
principle component analysis (PCA), minimum noise fraction (MNF) are pre-processing steps that 
enhances the image by reducing the redundancy in the original data. In general, multispectral 
information has a collection of mixed pixels representing ground features that are to be 
distinguished using selective representative samples [10–12]. A supervised classification algorithm 
like random forest (RF) classifier is applied to datasets in this study as it is popular among the 
remote sensing community for its accuracy. RF is capable of handling high data dimensionality but 
sensitive to the sampling design. Relevant information that is suitable to the geographic datasets are 
provided as training samples to obtain better results that achieve high accuracy of up to 91% [13]. 

3. Materials and Methods 

3.1. Study Area 

The study area chosen is Kalaburagi, a growing urban sphere located at the north eastern part 
of Karnataka state. It extends between 76°04’ and 77°42’ East longitude, and 17°12’ and 17°46’ North 
latitude. A portion of the core urban area is considered for this study covering an area of about 18.9 
Sq·Km shown in Figure 1. 

 
Figure 1. Location of study area. 

3.2. Datasets 

Sentinel 2, multispectral dataset and AVIRIS NG, hyperspectral imagery obtained from 
spaceborne and airborne platforms are used for this study. Sentinel 2 multispectral imager is 
developed and operated by the European Space agency (ESA) that renders information in13 spectral 
bands, ranging from 443–2190 nm with multiple spatial resolution of 10 m, 20 m, and 60 m.  

Imaging spectroscopy data is acquired from AVIRIS NG reflectance corrected level 2 data 
ranging from 376–2500 nm with a ground sampling distance of 4–8 m and a sampling interval of 5 
nm. Spectral responses of these datasets are observed and bands that are highly informative are 
taken into account. The datasets acquired is represented in the form of 402*472 pixels that comprise 
spectral information of bands that are dimensionally reduced.  
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3.3. Methodology 

The satellite datasets were processed to fulfil the purpose of this study. The implemented 
operation is explained briefly in Figure 2. and in the following subsections. 

 
Figure 2. Formalized workflow. 

3.3.1. Dimensionality Reduction  

The dimensionality reduction process reduces spectral data by applying mathematical 
transformations that are a linear combination of all input bands. As the numbers of bands are 
contiguous and narrow in AVIRIS NG, discrete set of bands are chosen for performing classification. 
Transformation is applied to decorrelate and rescale the noise present in raw imagery. The 
characteristic dimensionality in the data is investigated through the associated eigenvalues. For this 
study, MNF transform, an unsupervised dimensionality reduction technique [14], is incorporated 
for AVIRIS NG reflectance corrected imagery containing a total of 425 bands. Covariance matrix 
computation followed by eigenvalue decomposition is the first phase of MNF transform. This phase 
continues to reduce the decorrelation thus normalizing the linear noise from the image by the 
process called ‘noise whitening’. The results will define a high signal-to-noise ratio that decreases 
towards lower order which are noise dominated. Associated eigenvalue elements of higher order 
(>1) renders bands that are highly informative when compared to that of values near 1. For this 
study, bands ranging from λ20 = 471 nm to λ194 = 1358 nm, λ218 = 1463 nm to λ283 = 1788 nm and λ330= 
2024 nm to λ411 = 2500 nm where λk is kth spectral band with its corresponding wavelength and a total 
of 323 bands from 425 are chosen thus eliminating water absorption and redundant bands. The 
covariance statistics that normalizes the noise in the image is computed in a forward MNF rotation. 
Later, the eigenvector matrixes with corresponding eigenvalues for the selected MNF components 
are displayed, from which eigenvalues (>3) mentioned in Table 1 containing almost 6 bands that are 
shown in Figure 3 are selected as the benchmark study region for Kalaburagi.  

Table 1. Eigen values for MNF transformed bands. 

MNF Eigen Values 
1 9.5014 
2 
3 
4 
5 
6 

6.5218 
4.7629 
4.3128 
3.7146 
3.4232 
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Figure 3. MNF transform. 

3.3.2. SNAP Processing  

Sentinel Application Platform (SNAP) is a specially designed package for processing ESA’s 
products. Sentinel 2 multispectral dataset having varied spatial resolutions needs to be equalized 
and hence resampled andreprojected for further processing. Spectral consistency is examined for 
Sentinel 2 bands that are capable to suit for urban applications and it is perceived that bands ranging 
from λ3 = 550 to 580 nm, λ4 = 640 to 670 nm, and λ8 = 780 to 900 nm are ideal for classification. The rest 
of the bands from the spectrum arediscarded as they strongly affect the atmospheric transmissivity 
at a certain wavelength.  

3.3.3. Transformation of Dimensionally Reduced AVIRIS NG to Sentinel 2–Like Dataset  

The reflectance corresponding to the spectral bands of AVIRIS NG are used to derive alike 
reflectance values from Sentinel 2 by analyzing the spectral response functions [3]. Reflectance 
spectra are compared and concatenated through weighted mean of the reflectance values 
determined using linear interpolation that is dependent upon spectral response function normalized 
to 1. Spectral bands that are dimensionally reduced having distinct and perceptible land cover 
features from both the datasets are examined for representative training sample collection. Physical 
features that disclose homogeneity with equivalent spatial and spectral properties are counted in 
this study. Visually clear land cover patterns that appear distinct in both the datasets are included in 
order to obtain better classified results. The MNF transformed bands of the hyperspectral imagery 
apparently provides clear cut details when compared to that of the multispectral imagery due to its 
finer resolution and low ground sampling distance. Focusing on image classification, it should be 
evident that the bands representing obviously ample information along the spectrum should be 
taken into account. It is observed that, MNF transformed bands 1, 3, and 4 of AVIRIS NG of range λk 

> 1900 nm are considered equivalent to bands 8, 4, and 3 of Sentinel 2 where λk > 850 nm are with 
specified analogy revealing urban information. Thus, the bands associated with similar reflectance 
properties of reliable urban information are equated and chose as input for further classification 
process.  

4. Results and Discussion  

4.1. Random Forest Classifier 

The supervised algorithm random forest uses bagging/bootstrap, an ensemble aggregation 
method, for estimating statistical quantities from samples and creates multiple models from single 
training dataset. Representative training samples are assigned for desired LULC classes that are 
structurally similar and works better for accurate predictions. For each of the five given bootstrap 
samples taken from the training dataset, some samples remain and are left out of the bag that are 
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averaged to estimate accuracy. Figure 4 represents the classification and regression tree (CART) 
analysis employed for AVIRIS NG and Sentinel 2 sensor datasets.  

 
Figure 4. Framework of random forest classifier. 

 
Figure 5. Classified result of using RF algorithm. 

4.2. Accuracy Assessment 

From the above classified results shown in Figure 5, it is estimated that the overall accuracy is 
higher for AVIRIS NG hyperspectral data than Sentinel 2 MSI for the assigned LULC classes. The 
assigned samples outperforms well for AVIRIS NG dimensionally reduced data as the results could 
be compared from Table 2. Features of Sentinel 2 that end up with low scores might have been 
strongly biased towards variables with many categories. The mean of individual class wise accuracy 
for AVIRIS NG and Sentinel 2 are 94.2% and 88.6%, respectively.  

Table 2. Accuracy results for random forest classifier 

Classes AVIRIS NG Sentinel 2 

Accuracy Precision Correlation Accuracy Precision Correlation 

Road 93.9 82.3 82.6 84.6 60.1 61.1 
Greenery 

Open Space 
Barren Land 

Urban 

97.7 
91.6 
91.8 
96 

94 
78.4 
79.5 
93.4 

92.9 
76.1 
75.7 
87.6 

94.3 
90.8 
92.8 
80.5 

85.2 
76.7 
81.3 
51.5 

83.3 
73.9 
79.2 
47.4 

5. Conclusions  

Hyperspectral airborne AVIRIS NG with highest ground sampling distance yielded better 
classified output as like original data. Significant dimensionality reduction by applying MNF has 
improved the quality of bands by rendering minute details of the original sensor imagery. Since MSI 
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data has a lower resolution, pixels associated with samples were misclassified, thus slackening 
accuracy. The scope of this paper clearly fulfils that hyperspectral data AVIRIS NG outperforms well 
when incorporating ensemble random forest supervised classification when compared with 
multispectral Sentinel 2. Also, a multispectral dataset being a good source of information addresses 
effects related to spatial resolution that can be improvised through image fusion techniques with 
hyperspectral imagery are beyond the scope of this paper and remain as a future work.  
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