Spatial Drought Monitoring in Thar Desert Using Satellite-Based Drought Indices and Geo-Informatics Techniques †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Modis Data
2.3. Climatic Data
2.4. Drought Indices
3. Results and Discussions
3.1. Land Use/Land Cover Classification
3.2. Rainfall Pattern of Thar
3.3. Rainfall Data Validation at District Level for the Years 2002 and 2014
3.4. Average Temperature of Thar
4. Conclusions
References
- Condra, G.E. Drought, Its Effects and Measures of Control in Nebraska; Nebraska Conservation Bulletin 25: Lincoln, NE, USA, 1944; p. 43. [Google Scholar]
- Wilhite, D.A.; Buchanan, M. Drought as hazard: Understanding the natural and social context. In Drought and Water Crisis: Science, Technology and Management Issues; Wilhite, D.A., Ed.; CRC Press: New York, NY, USA, 2005; pp. 3–29. [Google Scholar]
- Hazell, P.; Oram, P.; Chaherli, N. EPTD Discussion Paper No. 8 Environment and Production Technology Division; International Food Policy Research Institute 2033 K Street, N.W.: Washington, DC, USA, 2006. [Google Scholar]
- Akhtar, I.U.H. Pakistan Needs a New Crop Forecasting System. 2014. Available online: http://www.scidev.net/en/new-technologies/space-technology/opinions/pakistan-needs-a-newcrop-forecasting-system.html (accessed on 13 October 2014).
- Liaqat, M.U.; Cheema, M.J.M.; Huang, W.; Mahmood, T. Inter-comparison of MODIS and LANDSAT multiband vegetation indices used for wheat yield estimation in irrigated indus basin. Comput. Electron. Agric. 2017, 138, 39–47. [Google Scholar] [CrossRef]
- Wall, L.; Larocque, D.; Leger, P.M. The early explanatory power of NDVI in cropyield modeling. Int. J. Remote Sens. 2008, 29, 2211–2225. [Google Scholar] [CrossRef]
- Quiring, S.M.; Ganesh, S. Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agric. For. Meteorol. 2010, 150, 330–339. [Google Scholar] [CrossRef]
- Sholihah, R.I.; Bambang, H.; Shiddiq, D.; Panuju, D.R. Identification of agricultural drought extent based on vegetation health indices of Landsat data: Case of Subang and Karawang, Indonesia. Procedia Environ. Sci. 2016, 33, 14–20. [Google Scholar] [CrossRef]
- Rasheed, S.; Venugopal, K. Land suitability assessment for selected crops in vellore district based on agro-ecological characterization. J. Indian Soc. Remote Sens. 2009, 37, 615–629. [Google Scholar] [CrossRef]
- Huang, C.J.; Zhao, S.Y.; Wang, L.C.; Shakeel, A.A.; Chen, M.; Zhou, H.F. Alteration in chlorophyll fluorescence, lipid peroxidation and antioxidant enzymes activities in hybrid ramie (Boehmeria nivea L.) under drought stress. Aust. J. Crop Sci. 2010, 7, 594–599. [Google Scholar]
- Yingxin, G.; Bruce, K.W.; Daniel, M.H.; Khem, P.P.; Lei, J. NDVI saturation adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA. Ecol. Indic. 2013, 30, 1–6. [Google Scholar]
- Xu, D.; Guo, X. Compare NDVI extracted from Landsat 8 imagery with that from Landsat 7 imagery. Am. J. Remote Sens. 2014, 2, 10–14. [Google Scholar] [CrossRef]
- Sruthi, S.; Aslam, M.A.M. Agricultural Drought Analysis Using the NDVI and Land Surface Temperature Data; a Case Study of Raichur District. In Proceedings of the International Conference on Water Resources, Coastal and Ocean Engineering (Icwrcoe 2015), Mangalore, Karnataka, India, 12–16 March 2015. [Google Scholar]
- Cheema, M.J.M.; Bakhsh, A.; Mahmood, T.; Liaqat, M.U. Assessment of Water Allocations Using Remote Sensing and GIS Modeling for Indus Basin, Pakistan; Working Paper No. 036; International Food Policy Research Institute: Washington, DC, USA, 2016. [Google Scholar]
Year | Area (mha) | ||
---|---|---|---|
Barren Land | Moderate Vegetation | High Vegetation | |
2002 | 2.736 | 0.595 | 0.379 |
2005 | 2.667 | 0.597 | 0.445 |
2008 | 2.476 | 0.789 | 0.445 |
2011 | 2.350 | 0.791 | 0.570 |
2014 | 2.638 | 0.649 | 0.423 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilal, M.; Liaqat, M.U.; Cheema, M.J.M.; Mahmood, T.; Khan, Q. Spatial Drought Monitoring in Thar Desert Using Satellite-Based Drought Indices and Geo-Informatics Techniques. Proceedings 2018, 2, 179. https://doi.org/10.3390/ecws-2-04948
Bilal M, Liaqat MU, Cheema MJM, Mahmood T, Khan Q. Spatial Drought Monitoring in Thar Desert Using Satellite-Based Drought Indices and Geo-Informatics Techniques. Proceedings. 2018; 2(5):179. https://doi.org/10.3390/ecws-2-04948
Chicago/Turabian StyleBilal, Muhammad, Muhammad Usman Liaqat, Muhammad Jehanzeb Masud Cheema, Talha Mahmood, and Qasim Khan. 2018. "Spatial Drought Monitoring in Thar Desert Using Satellite-Based Drought Indices and Geo-Informatics Techniques" Proceedings 2, no. 5: 179. https://doi.org/10.3390/ecws-2-04948
APA StyleBilal, M., Liaqat, M. U., Cheema, M. J. M., Mahmood, T., & Khan, Q. (2018). Spatial Drought Monitoring in Thar Desert Using Satellite-Based Drought Indices and Geo-Informatics Techniques. Proceedings, 2(5), 179. https://doi.org/10.3390/ecws-2-04948