A Novel Modular eNose System Based on Commercial MOX Sensors to Detect Low Concentrations of VOCs for Breath Gas Analysis †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions and Outlook
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Miekisch, W.; Schubert, J.K.; Noeldge-Schomburg, G.F.E. Diagnostic potential of breath analysis—Focus on volatile organic compounds. Clin. Chim. Acta 2004, 347, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Musteata, F.M. Recent progress in in-vivo sampling and analysis. TrAC Trends Anal. Chem. 2013, 45, 154–168. [Google Scholar] [CrossRef]
- Buszewski, B.; Kesy, M.; Ligor, T.; Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr. 2007, 21, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, F.; Fuoco, R.; Trivella, M.G.; Ceccarini, A. Breath analysis: trends in techniques and clinical applications. Microchem. J. 2005, 79, 405–410. [Google Scholar] [CrossRef]
- Ferlay, J.; Shin, H.-R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, P.J. Analysis of volatile organic compounds in the exhaled breath for the diagnosis of lung cancer. J. Thorac. Oncol. 2008, 3, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Di Natale, C.; Davide, F.; D’Amico, A. Pattern recognition in gas sensing: Well-stated techniques and advances. Sens. Actuators B Chem. 1995, 23, 111–118. [Google Scholar] [CrossRef]
Chamber/Board | Sensor Type | Number of Sensors | Sensor Output Signals | Target Gas |
---|---|---|---|---|
Analog | MICS 6814 | 1 | 3 | NH3, Reducing, Oxidant |
MICS 4514 | 1 | 2 | Reducing, Oxidant | |
TGS 8100 | 1 | 1 | Air quality | |
CCS 801 | 2 | 1 | Air quality | |
Digital | CCS 811 | 2 | 1 | Air quality |
Sensirion SGP30 | 2 | 2 | H2, Ethanol | |
IDT ZMOD 4410 | 2 | 3 | Output M1, Output M2, Output M3, | |
Bosch BME 680 | 2 | 4 | Temperature, Humidity, Pressure, VOC signal |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaeschke, C.; Gonzalez, O.; Glöckler, J.J.; Hagemann, L.T.; Richardson, K.E.; Adrover, F.; Padilla, M.; Mitrovics, J.; Mizaikoff, B. A Novel Modular eNose System Based on Commercial MOX Sensors to Detect Low Concentrations of VOCs for Breath Gas Analysis. Proceedings 2018, 2, 993. https://doi.org/10.3390/proceedings2130993
Jaeschke C, Gonzalez O, Glöckler JJ, Hagemann LT, Richardson KE, Adrover F, Padilla M, Mitrovics J, Mizaikoff B. A Novel Modular eNose System Based on Commercial MOX Sensors to Detect Low Concentrations of VOCs for Breath Gas Analysis. Proceedings. 2018; 2(13):993. https://doi.org/10.3390/proceedings2130993
Chicago/Turabian StyleJaeschke, Carsten, Oriol Gonzalez, Johannes J. Glöckler, Leila T. Hagemann, Kaylen E. Richardson, Francesc Adrover, Marta Padilla, Jan Mitrovics, and Boris Mizaikoff. 2018. "A Novel Modular eNose System Based on Commercial MOX Sensors to Detect Low Concentrations of VOCs for Breath Gas Analysis" Proceedings 2, no. 13: 993. https://doi.org/10.3390/proceedings2130993
APA StyleJaeschke, C., Gonzalez, O., Glöckler, J. J., Hagemann, L. T., Richardson, K. E., Adrover, F., Padilla, M., Mitrovics, J., & Mizaikoff, B. (2018). A Novel Modular eNose System Based on Commercial MOX Sensors to Detect Low Concentrations of VOCs for Breath Gas Analysis. Proceedings, 2(13), 993. https://doi.org/10.3390/proceedings2130993