Artificial Neural Network for Daily Low Stream Flow Rate Prediction of Perigiali Stream, Kavala City, NE Greece †
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results and Discussion
4.1. Structure of Artificial Neural Network (M13.10.1)
4.2. Model Statistical Efficiency Criteria and Performance Metrics
5. Discussion-Conclusions-Further Research
Supplementary Materials
Conflicts of Interest
Appendix A
No. | Date | Stream Flow Rate (m3/s) Site-Measured | Stream Flow Rate (m3/s) Calculated (M13.10.1) |
---|---|---|---|
1 | 14-5-2016 | 0.4370 | 0.3151 |
2 | 15-5-2016 | 0.5080 | 0.5156 |
3 | 16-5-2016 | 0.4030 | 0.5368 |
4 | 17-5-2016 | 0.4030 | 0.3824 |
5 | 18-5-2016 | 0.4720 | 0.4206 |
6 | 19-5-2016 | 0.5830 | 0.3695 |
7 | 20-5-2016 | 0.5080 | 0.5401 |
8 | 21-5-2016 | 2.7460 | 2.7714 |
9 | 22-5-2016 | 1.0110 | 1.0422 |
10 | 23-5-2016 | 0.8300 | 0.7277 |
11 | 24-5-2016 | 0.8740 | 0.8777 |
12 | 25-5-2016 | 0.6620 | 0.6884 |
13 | 26-5-2016 | 0.6620 | 0.3522 |
14 | 27-5-2016 | 0.3700 | 0.3328 |
15 | 28-5-2016 | 0.2488 | 0.1621 |
16 | 29-5-2016 | 0.3701 | 0.2290 |
17 | 30-5-2016 | 0.2775 | 0.2464 |
18 | 31-5-2016 | 0.3381 | 0.2399 |
19 | 1-6-2016 | 0.2488 | 0.1881 |
20 | 2-6-2016 | 0.1700 | 0.2775 |
21 | 3-6-2016 | 0.3701 | 0.4214 |
22 | 4-6-2016 | 0.5451 | 0.3349 |
23 | 5-6-2016 | 0.3381 | 0.2148 |
24 | 6-6-2016 | 0.5450 | 0.4573 |
25 | 7-6-2016 | 0.3072 | 0.3277 |
26 | 8-6-2016 | 0.1950 | 0.3244 |
27 | 9-6-2016 | 0.1238 | 0.5328 |
28 | 10-6-2016 | 0.1238 | 0.2220 |
29 | 11-6-2016 | 0.1950 | 0.1596 |
30 | 12-6-2016 | 0.1238 | 0.2532 |
31 | 13-6-2016 | 1.4650 | 1.4400 |
32 | 14-6-2016 | 0.6220 | 0.5874 |
33 | 15-6-2016 | 0.4371 | 0.6716 |
34 | 16-6-2016 | 0.3072 | 0.3144 |
35 | 17-6-2016 | 0.2213 | 0.2456 |
36 | 18-6-2016 | 0.3072 | 0.1447 |
37 | 19-6-2016 | 0.2775 | 0.0960 |
38 | 20-6-2016 | 0.1950 | 0.1450 |
39 | 21-6-2016 | 0.2775 | 0.1379 |
40 | 22-6-2016 | 0.0832 | 0.1844 |
41 | 23-6-2016 | 0.1028 | 0.0345 |
42 | 24-6-2016 | 0.0115 | 0.0324 |
43 | 25-6-2016 | 0.0344 | 0.1006 |
44 | 26-6-2016 | 0.1462 | 0.0823 |
45 | 27-6-2016 | 0.1462 | 0.2139 |
46 | 28-6-2016 | 0.2775 | 0.3824 |
47 | 29-6-2016 | 0.1700 | 0.2488 |
48 | 30-6-2016 | 0.0652 | 0.1717 |
49 | 1-7-2016 | 0.1700 | 0.1751 |
50 | 2-7-2016 | 0.1700 | 0.1731 |
51 | 3-7-2016 | 0.3701 | 0.2599 |
52 | 4-7-2016 | 0.2775 | 0.1681 |
53 | 5-7-2016 | 0.2775 | 0.1840 |
54 | 6-7-2016 | 0.0652 | 0.1986 |
55 | 7-7-2016 | 0.2213 | 0.2425 |
56 | 8-7-2016 | 0.0218 | 0.2421 |
57 | 9-7-2016 | 0.0832 | 0.2085 |
58 | 10-7-2016 | 0.1028 | 0.1696 |
59 | 11-7-2016 | 0.1028 | 0.0924 |
60 | 12-7-2016 | 0.1028 | 0.1883 |
61 | 13-7-2016 | 0.0489 | 0.1802 |
62 | 14-7-2016 | 0.1238 | 0.2023 |
63 | 15-7-2016 | 0.0652 | 0.1956 |
64 | 16-7-2016 | 0.2213 | 0.3563 |
65 | 17-7-2016 | 0.1462 | 0.1511 |
66 | 18-7-2016 | 0.0344 | 0.2032 |
67 | 19-7-2016 | 0.1950 | 0.2087 |
68 | 20-7-2016 | 0.1028 | 0.1845 |
69 | 21-7-2016 | 0.0344 | 0.1792 |
70 | 22-7-2016 | 0.3381 | 0.1551 |
71 | 23-7-2016 | 0.2213 | 0.1385 |
72 | 24-7-2016 | 0.1950 | 0.1859 |
73 | 25-7-2016 | 0.1238 | 0.1675 |
74 | 26-7-2016 | 0.0340 | 0.2132 |
75 | 27-7-2016 | 0.1028 | 0.1404 |
76 | 28-7-2016 | 0.0489 | 0.2120 |
77 | 29-7-2016 | 0.0832 | 0.1716 |
78 | 30-7-2016 | 0.1238 | 0.1539 |
79 | 31-7-2016 | 0.3701 | 0.2470 |
80 | 1-8-2016 | 0.0652 | 0.1286 |
81 | 2-8-2016 | 0.1950 | 0.1875 |
82 | 3-8-2016 | 0.1028 | 0.2106 |
83 | 4-8-2016 | 0.1462 | 0.1703 |
84 | 5-8-2016 | 0.2488 | 0.1431 |
85 | 6-8-2016 | 0.3381 | 0.1404 |
86 | 7-8-2016 | 0.1238 | 0.1855 |
87 | 8-8-2016 | 0.1950 | 0.1470 |
88 | 9-8-2016 | 0.3701 | 0.3080 |
89 | 10-8-2016 | 0.1950 | 0.0914 |
90 | 11-8-2016 | 0.3381 | 0.1474 |
91 | 12-8-2016 | 0.2488 | 0.1523 |
92 | 13-8-2016 | 0.1950 | 0.1698 |
93 | 14-8-2016 | 0.2488 | 0.1911 |
94 | 15-8-2016 | 0.2219 | 0.2268 |
95 | 16-8-2016 | 0.2775 | 0.2724 |
96 | 17-8-2016 | 0.4371 | 0.3402 |
97 | 18-8-2016 | 0.3701 | 0.3989 |
98 | 19-8-2016 | 0.4031 | 0.3530 |
99 | 20-8-2016 | 0.3072 | 0.3288 |
100 | 21-8-2016 | 0.1950 | 0.1659 |
101 | 22-8-2016 | 0.2213 | 0.1439 |
102 | 23-8-2016 | 0.4371 | 0.1598 |
103 | 24-8-2016 | 0.2775 | 0.1746 |
104 | 25-8-2016 | 0.2213 | 0.1580 |
105 | 26-8-2016 | 0.2775 | 0.3003 |
106 | 27-8-2016 | 0.2775 | 0.4087 |
107 | 28-8-2016 | 0.3072 | 0.2810 |
108 | 29-8-2016 | 0.4371 | 0.1957 |
109 | 30-8-2016 | 0.6616 | 0.1487 |
110 | 24-5-2017 | 0.1210 | 0.0630 |
111 | 25-5-2017 | 0.0820 | 0.2088 |
112 | 26-5-2017 | 5.9150 | 5.8006 |
113 | 27-5-2017 | 0.2130 | 0.3294 |
114 | 28-5-2017 | 0.0820 | 0.0721 |
115 | 29-5-2017 | 0.0650 | 0.1313 |
116 | 30-5-2017 | 0.1010 | 0.0732 |
117 | 31-5-2017 | 0.0490 | 0.0942 |
118 | 1-6-2017 | 0.0340 | 0.0577 |
119 | 2-6-2017 | 0.0650 | 0.0701 |
120 | 3-6-2017 | 0.0650 | 0.0926 |
121 | 4-6-2017 | 0.0820 | 0.1520 |
122 | 5-6-2017 | 0.0650 | 0.1203 |
123 | 6-6-2017 | 0.0820 | 0.1310 |
124 | 7-6-2017 | 0.0650 | 0.0775 |
125 | 8-6-2017 | 0.0820 | 0.0967 |
126 | 9-6-2017 | 0.1010 | 0.2323 |
127 | 10-6-2017 | 0.0820 | 0.0822 |
128 | 11-6-2017 | 5.8560 | 5.7520 |
129 | 12-6-2017 | 1.4010 | 0.1787 |
130 | 13-6-2017 | 0.0650 | 0.1244 |
131 | 14-6-2017 | 0.1010 | 0.0562 |
132 | 15-6-2017 | 0.0820 | 0.0934 |
133 | 16-6-2017 | 0.0820 | 0.1727 |
134 | 17-6-2017 | 0.1010 | 0.0953 |
135 | 18-6-2017 | 0.0820 | 0.2393 |
136 | 19-6-2017 | 0.0650 | 0.1153 |
137 | 20-6-2017 | 0.0650 | 0.2136 |
138 | 21-6-2017 | 0.0650 | 0.0858 |
139 | 22-6-2017 | 0.0650 | 0.1791 |
140 | 23-6-2017 | 0.0650 | 0.0815 |
141 | 24-6-2017 | 0.0490 | 0.0913 |
142 | 25-6-2017 | 0.0650 | 0.0944 |
143 | 26-6-2017 | 0.0490 | 0.1180 |
144 | 27-6-2017 | 0.0490 | 0.1054 |
145 | 28-6-2017 | 0.0490 | 0.0907 |
146 | 29-6-2017 | 0.0490 | 0.0868 |
147 | 30-6-2017 | 0.0490 | 0.0799 |
148 | 1-7-2017 | 0.0490 | 0.0761 |
149 | 2-7-2017 | 0.0490 | 0.0405 |
150 | 3-7-2017 | 0.0645 | 0.0220 |
151 | 4-7-2017 | 0.0486 | 0.0528 |
152 | 5-7-2017 | 0.0486 | 0.0771 |
153 | 6-7-2017 | 0.0486 | 0.1173 |
154 | 7-7-2017 | 0.0486 | 0.0557 |
155 | 8-7-2017 | 0.0486 | 0.0526 |
156 | 9-7-2017 | 0.0486 | 0.0943 |
157 | 10-7-2017 | 0.0344 | 0.0954 |
158 | 11-7-2017 | 0.0344 | 0.1002 |
159 | 12-7-2017 | 0.0645 | 0.1101 |
160 | 13-7-2017 | 0.0344 | 0.0953 |
161 | 14-7-2017 | 0.9872 | 0.0938 |
162 | 15-7-2017 | 0.1007 | 0.1689 |
163 | 16-7-2017 | 0.0819 | 0.0594 |
164 | 17-7-2017 | 0.1421 | 0.1343 |
165 | 18-7-2017 | 0.1208 | 0.0546 |
166 | 19-7-2017 | 0.1007 | 0.1309 |
167 | 20-7-2017 | 0.0819 | 0.1488 |
168 | 21-7-2017 | 0.0486 | 0.1666 |
169 | 22-7-2017 | 0.0645 | 0.0871 |
170 | 23-7-2017 | 0.0645 | 0.0853 |
171 | 24-7-2017 | 0.0645 | 0.0791 |
172 | 25-7-2017 | 0.0344 | 0.0470 |
173 | 26-7-2017 | 0.0486 | 0.0324 |
174 | 27-7-2017 | 0.0486 | 0.1451 |
175 | 28-7-2017 | 0.0486 | 0.0401 |
176 | 29-7-2017 | 0.0486 | 0.0833 |
177 | 30-7-2017 | 0.0486 | 0.0854 |
178 | 31-7-2017 | 0.0486 | 0.0917 |
179 | 1-8-2017 | 0.0344 | 0.1454 |
180 | 2-8-2017 | 0.0344 | 0.1289 |
181 | 3-8-2017 | 0.0344 | 0.0650 |
182 | 4-8-2017 | 0.0344 | 0.0745 |
183 | 5-8-2017 | 0.0344 | 0.0478 |
184 | 6-8-2017 | 0.0486 | 0.0646 |
185 | 7-8-2017 | 0.0344 | 0.0831 |
186 | 8-8-2017 | 0.0344 | 0.0593 |
187 | 9-8-2017 | 0.0344 | 0.0648 |
188 | 10-8-2017 | 0.0344 | 0.0761 |
189 | 11-8-2017 | 0.0344 | 0.0717 |
190 | 12-8-2017 | 0.0344 | 0.0536 |
191 | 13-8-2017 | 0.0344 | 0.0579 |
192 | 14-8-2017 | 0.0344 | 0.0325 |
193 | 15-8-2017 | 0.0344 | 0.0407 |
194 | 16-8-2017 | 0.0344 | 0.0666 |
195 | 17-8-2017 | 0.0344 | 0.0412 |
196 | 18-8-2017 | 0.0221 | 0.0871 |
197 | 19-8-2017 | 0.2060 | 0.0963 |
198 | 20-8-2017 | 0.1890 | 0.0784 |
199 | 21-8-2017 | 0.1670 | 0.0463 |
200 | 22-8-2017 | 0.0486 | 0.1150 |
201 | 23-8-2017 | 0.1210 | 0.0395 |
202 | 24-8-2017 | 0.0486 | 0.0695 |
203 | 25-8-2017 | 0.0486 | 0.0432 |
204 | 26-8-2017 | 0.2070 | 0.0584 |
205 | 27-8-2017 | 0.1690 | 0.0670 |
206 | 28-8-2017 | 0.0344 | 0.0642 |
207 | 29-8-2017 | 0.0486 | 0.0653 |
208 | 30-8-2017 | 0.1770 | 0.1272 |
209 | 31-8-2017 | 0.1710 | 0.0511 |
210 | 1-9-2017 | 0.0730 | 0.0719 |
211 | 2-9-2017 | 0.0470 | 0.0651 |
212 | 3-9-2017 | 0.1930 | 0.0619 |
213 | 4-9-2017 | 0.9439 | 0.0466 |
214 | 5-9-2017 | 0.0344 | 0.0558 |
215 | 6-9-2017 | 0.0360 | 0.0309 |
216 | 7-9-2017 | 0.0320 | 0.0423 |
217 | 8-9-2017 | 0.0430 | 0.1097 |
218 | 9-9-2017 | 0.1390 | 0.1766 |
219 | 10-9-2017 | 0.1370 | 0.1078 |
220 | 11-9-2017 | 0.0220 | 0.0488 |
221 | 12-9-2017 | 0.0344 | 0.0442 |
222 | 13-9-2017 | 0.1450 | 0.0686 |
223 | 14-9-2017 | 0.0344 | 0.1917 |
224 | 15-9-2017 | 0.1610 | 0.1379 |
225 | 16-9-2017 | 0.1490 | 0.0648 |
226 | 17-9-2017 | 0.0486 | 0.0852 |
227 | 18-9-2017 | 0.1080 | 0.0699 |
228 | 19-9-2017 | 0.0486 | 0.0667 |
229 | 20-9-2017 | 0.0344 | 0.0622 |
230 | 21-9-2017 | 0.0990 | 0.0127 |
231 | 22-9-2017 | 0.0714 | 0.0565 |
232 | 23-9-2017 | 0.1380 | 0.0165 |
233 | 24-9-2017 | 0.0996 | 0.0243 |
234 | 25-9-2017 | 0.0934 | 0.1726 |
235 | 26-9-2017 | 4.6003 | 4.6082 |
236 | 27-9-2017 | 0.1870 | 0.0140 |
237 | 28-9-2017 | 0.1510 | 0.0125 |
238 | 29-9-2017 | 0.1790 | 0.0118 |
239 | 30-9-2017 | 0.0330 | 0.0174 |
240 | 1-10-2017 | 0.1280 | 0.1406 |
241 | 2-10-2017 | 0.1420 | 0.0136 |
242 | 3-10-2017 | 0.0910 | 0.0124 |
243 | 4-10-2017 | 0.0650 | 0.0139 |
244 | 5-10-2017 | 0.1050 | 0.0147 |
245 | 6-10-2017 | 0.0590 | 0.0550 |
246 | 7-10-2017 | 1.1245 | 1.1225 |
References
- Gustard, A.; Demuth, S. Estimating, Predicting and Forecasting Low Flows. In Manual on Low-flow Estimation and Prediction (Operational Hydrology Report No. 50), 1st ed.; Gustard, A., Demuth, S., Eds.; World Meteorological Organization (WMO): Geneva, Switzerland, 2008; Volume 1029, pp. 16–21. [Google Scholar]
- Papalaskaris, T.; Panagiotidis, T. Artificial Low Stream Flow Time Series Generation of Perigiali Stream, Kavala city, NE Greece. In Proceedings of the 6th International Symposium on Environmental & Material Flow Management (6th E.M.F.M.), Bor, Serbia, 2–4 October 2016; Živković, Ž., Mihajlović, I., Dordević, P., Eds.; University of Belgrade, Technical Faculty in Bor: Bor, Serbia, 2016; pp. 20–38. [Google Scholar]
- Papalaskaris, T.; Panagiotidis, T. Stochastic generation of low stream flow data of Perigiali Stream, Kavala city, NE Greece. In Proceedings of the 10th World Congress of European Water Resources Association (“E.W.R.A.”) on Water Resources and Environment “Panta Rhei” (10th “E.W.R.A.” “Panta Rhei”), Athens, Greece, 5–9 July 2017; Tsakiris, G., Tsihrintzis, V., Vangelis, H., Tigkas, D., Eds.; European Water Resources Association (E.W.R.A.): Athens, Greece, 2017; pp. 953–960. [Google Scholar]
- Papalaskaris, T.; Panagiotidis, T. Stochastic generation of low stream flow data of Perigiali Stream, Kavala city, NE Greece. Eur. Water 2017, 60, 299–306. [Google Scholar] [CrossRef]
- Dolling, O.; Varas, E. Artificial neural networks for streamflow prediction. J. Hydraul. Res. 2002, 40, 547–554. [Google Scholar] [CrossRef]
- Panagoulia, D. Artificial neural networks and high and low flows in various climate regimes. Hydrol. Sci. J. 2006, 51, 563–587. [Google Scholar] [CrossRef]
- Kitsikoudis, V.; Sidiropoulos, E.; Hrissanthou, V. Machine Learning Utilization for Bed Load Transport in Gravel-Bed Rivers. Water Resour. Manag. 2014, 28, 3727–3743. [Google Scholar] [CrossRef]
- Kothari, M.; Gharde, K.D. Application of ANN and fuzzy logic algorithms for stream flow modeling of Savitri catchment. J. Earth Syst. Sci. 2015, 124, 933–943. [Google Scholar] [CrossRef]
- Papalaskaris, T.; Dimitriadou, P. Artificial Neural Network for Bed Load Transport Rate in Nestos River, Greece. Spec. Top. Rev. Porous Media Int. J. 2017, 8, 145–157. [Google Scholar] [CrossRef]
- Johnson, A. Modified Parshall Flume (U.S. Geological Survey Open-File Report), 1st ed.; United States Department of the Interior Geological Survey: Denver, CO, USA, 1963; pp. 1–8.
- Survey, G.; Rantz, S.E. In Measurement and Computation of Streamflow: Volume 1. Measurement of Stage and Discharge, 1st ed.; United States Government Printing Office: Washington, DC, USA, 1982; Volume 1, pp. 260–272.
- Modified Parshall Flume—(U.S.G.S.). Available online: https://www.usgs.gov/media/images/modified-parshall-flume (accessed on 3 March 2018).
- U.S.G.S. Portable Parshall Flume (Open-Channel-Flow Hydrological Equipment). Available online: https://www.openchannelflow.com/blog/usgs-portable-parshall-flume (accessed on 3 March 2018).
- U.S.G.S. Portable Parshall Flume, 3in (Rickly Hydrological Equipment). Available online: http://rickly.com/usgs-portable-parshall-flume-3in/ (accessed on 3 March 2018).
- Measuring Low Flow in San Pedro River. Available online: https://www.youtube.com/watch?v=gLWtfMYicrI (accessed on 3 March 2018).
- Inspecting a Parshall Flume (3-Inch USGS Modified Portable). Available online: https://www.youtube.com/watch?v=YtqflgfOb5E (accessed on 3 March 2018).
- Inspecting a Parshall Flume. Available online: https://www.youtube.com/watch?v=y6hiOLgTo6g (accessed on 3 March 2018).
- Inspecting a Parshall Flume (a+b). Available online: https://www.youtube.com/watch?v=EgV5AKAYBe4 (accessed on 3 March 2018).
- MSc. In Management of Water Resources in the Mediterranean 3. Available online: https://www.youtube.com/watch?v=picUMHITkx0 (accessed on 3 March 2018).
- Father of the Flume: Ralph Parshall. Available online: https://lib2.colostate.edu/archives/water/parshall/ (accessed on 3 March 2018).
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Papalaskaris, T.; Dimitriadou, P.; Hrissanthou, V. Comparison between computations and measurements of bed load transport rate in Nestos River, Greece. Procedia Eng. 2016, 162, 172–180. [Google Scholar] [CrossRef]
- Sentas, A.; Psilovikos, A.; Psilovikos, T. Statistical Analysis and Assessment of Water Quality Parameters in Pagoneri, River Nestos. Eur. Water 2016, 55, 115–124. Available online: http://www.ewra.net/ew/pdf/EW_2016_55_10.pdf (accessed on 10 May 2018).
- Sentas, A.; Psilovikos, A. Monitoring Parameters Tw, DO and Environmental Evaluation of the Artificial Lake of Thesaurus for the years 2004–2007. In Proceedings of the 1st International Conference HydroMedit 2014, Volos, Greece, 13–15 November 2014; Department of Ichthyology & Aquatic Environment, University of Thessaly: Volos, Greece, 2014; pp. 19–23. [Google Scholar]
- Sentas, A.; Psilovikos, A.; Matzafleri, N. Application of stochastic models for predicting water quality in Dam-Lake Thesaurus, Greece. In Proceedings of the 12th International Conference: Protection and Restoration of the Environment XII, Skiathos, Greece, 29 June–3 July 2014; Kanakoudis, V., Theodoros, Karakasidis, E., Laspidou, C., Kungolos, A., Samaras, P., Eds.; Desalination & Water Treatment Journal: London, UK, 2016; Volume 57, 11435. pp. 458–465. [Google Scholar]
Number of Paired Values | RMSE (ltrs/s) | RE (%) | EC | r | r2 | Discrepancy Ratio |
---|---|---|---|---|---|---|
246 | 0.1479 | −0.4080 | 0.9468 | 0.9732 | 0.9472 | 0.6789 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papalaskaris, T.; Panagiotidis, T. Artificial Neural Network for Daily Low Stream Flow Rate Prediction of Perigiali Stream, Kavala City, NE Greece. Proceedings 2018, 2, 578. https://doi.org/10.3390/proceedings2110578
Papalaskaris T, Panagiotidis T. Artificial Neural Network for Daily Low Stream Flow Rate Prediction of Perigiali Stream, Kavala City, NE Greece. Proceedings. 2018; 2(11):578. https://doi.org/10.3390/proceedings2110578
Chicago/Turabian StylePapalaskaris, Thomas, and Theologos Panagiotidis. 2018. "Artificial Neural Network for Daily Low Stream Flow Rate Prediction of Perigiali Stream, Kavala City, NE Greece" Proceedings 2, no. 11: 578. https://doi.org/10.3390/proceedings2110578
APA StylePapalaskaris, T., & Panagiotidis, T. (2018). Artificial Neural Network for Daily Low Stream Flow Rate Prediction of Perigiali Stream, Kavala City, NE Greece. Proceedings, 2(11), 578. https://doi.org/10.3390/proceedings2110578