Health Effects of Coffee Products on Oxidative Stress-Related Metabolic Disorders: An Updated Perspective †
Abstract
1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mihai, R.A.; Ortiz-Pillajo, D.C.; Iturralde-Proaño, K.M.; Vinueza-Pullotasig, M.Y.; Sisa-Tolagasí, L.A.; Villares-Ledesma, M.L.; Melo-Heras, E.J.; Cubi-Insuaste, N.S.; Catana, R.D. Comprehensive Assessment of Coffee Varieties (Coffea arabica L.; Coffea canephora L.) from Coastal, Andean, and Amazonian Regions of Ecuador; A Holistic Evaluation of Metabolism, Antioxidant Capacity and Sensory Attributes. Horticulturae 2024, 10, 200. [Google Scholar] [CrossRef]
- Kobylińska, Z.; Biesiadecki, M.; Kuna, E.; Galiniak, S.; Mołoń, M. Coffee as a Source of Antioxidants and an Elixir of Youth. Antioxidantes 2025, 14, 285. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lv, S.; Sun, J.; Zhang, M.; Zhang, L.; Sun, Y.; Zhao, Z.; Wang, D.; Zhao, X.; Zhang, J. Caffeine Reduces Oxidative Stress to Protect Against Hyperoxia-induced Lung Injury via The Adenosine A2A receptor/cAMP/PKA/Src/ERK1/2/p38MAPK pathway. Redox Rep. 2022, 27, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Domaszewski, P.; Konieczny, M.; Pakosz, P.; Matuska, J.; Skorupska, E.; Santafé, M.M. Obesity as an Influencing Factor For The Occurrence of Caffeine-induced Effects in Women. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 103836. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, M.O.; Horvath, T.L. Limitations in Anti-obesity Drug Development: The Critical Role of Hunger-promoting Neurons. Nat. Rev. Drug Discov. 2012, 11, 675–691. [Google Scholar] [CrossRef] [PubMed]
- Bonetti, G.; Herbst, K.L.; Donato, K.; Dhuli, K.; Kiani, A.K.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Bertelli, M. Dietary Supplements for Obesity. J. Prev. Med. Hyg. 2022, 63, E160–E168. [Google Scholar] [CrossRef] [PubMed]
- Bashir, K.M.I.; Kim, J.W.; Park, H.-R.; Lee, J.-K.; Choi, B.-R.; Choi, J.-S.; Ku, S.-K. Validating the Health Benefits of Coffee Berry Pulp Extracts in Mice with High-Fat Diet-Induced Obesity and Diabetes. Antioxidants 2024, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.M.; Joo, M.J.; Lee, Y.S.; Kim, M.G. Effects of coffee consumption on insulin resistance and sensitivity: A meta-analysis. Nutrients 2021, 13, 3976. [Google Scholar] [CrossRef] [PubMed]
- Fibrianto, K.; ‘izza, A.; Martati, E.; Bimo, I.A. The Potentials of Robusta (Coffea Robusta L.) and Arabica (Coffea Arabica L.) Coffee Leaf By-Product as Anti-diabetic Drinks. Canrea J. Food Tech. Nutr. Culin. J. 2023, 6, 154–166. [Google Scholar] [CrossRef]
- Elpasty, S.; Helal, E.; Mansoury, M.; Algendy, A. Impact of Green Coffee Extract on Body Weight and Physiological Indicators of Metabolic State in Obese Male Rats. Egypt. J. Chem. 2022, 65, 715–723. [Google Scholar] [CrossRef]
- Seow, L.J.; Shamlan, S.; Seow, E.K. Influence of Roasting Degrees on The Antioxidant and Anti-angiogenic Effects of Coffea Liberica. J. Food Meas. Charact. 2021, 15, 4030–4036. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.; Borrás-Rocher, F.; Micol, V.; Barrajón-Catalán, E. Artificial Intelligence Applied to Improve Scientific Reviews: The Antibacterial Activity of Cistus Plants as Proof of Concept. Antibiotics 2023, 12, 327. [Google Scholar] [CrossRef] [PubMed]
- Henn, M.; Babio, N.; Romaguera, D.; Vázquez-Ruiz, Z.; Konieczna, J.; Vioque, J.; Torres-Collado, L.; Razquin, C.; Buil-Cosiales, P.; Fitó, M.; et al. Increase From Low to Moderate, But Not High, Caffeinated Coffee Consumption is Associated with Favorable Changes in Body Fat. Clin. Nutr. 2023, 42, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Goya, L.; Sánchez-Medina, A.; Redondo-Puente, M.; Dupak, R.; Bravo, L.; Sarriá, B. Main Colonic Metabolites from Coffee Chlorogenic Acid May Counteract Tumor Necrosis Factor-α-Induced Inflammation and Oxidative Stress in 3T3-L1 Cells. Molecules 2024, 29, 88. [Google Scholar] [CrossRef] [PubMed]
- Le Lay, S.; Simard, G.; Martinez, M.C.; Andriantsitohaina, R. Oxidative Stress and Metabolic Pathologies: From an Adipocentric Point of View. Oxid. Med. Cell. Longev. 2014, 2014, 908539. [Google Scholar] [CrossRef] [PubMed]
- Waśkiewicz, A.; Beszterda, M.; Goliński, P. Nonenzymatic Antioxidants in Plants. In Oxidative Damage to Plants: Antioxidant Networks and Signaling, 1st ed.; Editor Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 201–234. [Google Scholar] [CrossRef]
- Savini, I.; Catani, M.V.; Evangelista, D.; Gasperi, V.; Avigliano, L. Obesity-associated Oxidative Stress: Strategies Finalized to Improve Redox State. Int. J. Mol. Sci. 2013, 14, 10497–10538. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, H.; Sun, Q.; Li, J.; Heianza, Y.; Van Dam, R.M.; Hu, F.B.; Rimm, E.; Manson, J.E.; Qi, L. Coffee Drinking Timing and Mortality in US Adults. Eur. Heart J. 2025, 46, 749–759. [Google Scholar] [CrossRef]
- Lange, E.; Kęszycka, P.K.; Pałkowska-Goździk, E.; Billing-Marczak, K. Comparison of Glycemic Response to Carbohydrate Meals without or with a Plant-Based Formula of Kidney Bean Extract, White Mulberry Leaf Extract, and Green Coffee Extract in Individuals with Abdominal Obesity. Int. J. Environ. Res. Public Health 2022, 19, 12117. [Google Scholar] [CrossRef] [PubMed]
- Brzezińska, R.; Górska, A.; Wirkowska-Wojdyła, M.; Ostrowska-Ligęza, E. Spent Coffee Grounds—A Coffee By-Product Abundant in Bioactive Compounds with Antioxidant Properties. Biol. Life Sci. Forum. 2023, 26, 106. [Google Scholar] [CrossRef]
- Duangjai, A.; Nuengchamnong, N.; Suphrom, N.; Trisat, K.; Limpeanchob, N.; Saokaew, S. Potential of Coffee Fruit Extract and Quinic Acid on Adipogenesis and Lipolysis in 3T3-L1 Adipocytes. Kobe J. Med. Sci. 2018, 64, E84–E92. [Google Scholar] [PubMed] [PubMed Central]
- Quarta, S.; Scoditti, E.; Carluccio, M.A.; Calabriso, N.; Santarpino, G.; Damiano, F.; Siculella, L.; Wabitsch, M.; Verri, T.; Favari, C.; et al. Coffee Bioactive n-methylpyridinium Attenuates Tumor Necrosis Factor (Tnf)-α-mediated Insulin Resistance and Inflammation in Human Adipocytes. Biomolecules 2021, 11, 1545. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, Q.; Shen, L.; Guo, K.; Zhou, X. Chlorogenic Acid Improves Glucose Tolerance, Lipid Metabolism, Inflammation and Microbiota Composition in Diabetic db/db Mice. Front. Endocrinol. 2022, 13, 1042044. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, I.; Grzędzicka, J.; Niedzielska, A.; Witkowska-Piłaszewicz, O. Impact of Chlorogenic Acid on Peripheral Blood Mononuclear Cell Proliferation, Oxidative Stress, and Inflammatory Responses in Racehorses during Exercise. Antioxidants 2023, 12, 1924. [Google Scholar] [CrossRef] [PubMed]
- Lone, A.; Alnawah, A.K.; Hadadi, A.S.; Alturkie, F.M.; Aldreweesh, Y.A.; Alhedhod, A.T. Coffee Consumption Behavior in Young Adults: Exploring Motivations, Frequencies, and Reporting Adverse Effects and Withdrawal Symptoms. Psychol. Res. Behav. Manag. 2023, 16, 3925–3937. [Google Scholar] [CrossRef] [PubMed]
- Andrade, N.; Rodrigues, I.; Carmo, F.; Campanher, G.; Bracchi, I.; Lopes, J.; Patrício, E.; Guimarães, J.T.; Barreto-Peixoto, J.A.; Costa, A.S.G.; et al. Sustainable Utilization of Coffee Pulp, a By-Product of Coffee Production: Effects on Metabolic Syndrome in Fructose-Fed Rats. Antioxidants 2025, 14, 266. [Google Scholar] [CrossRef] [PubMed]
- Nederveen, J.P.; Mastrolonardo, A.J.; Xhuti, D.; Di Carlo, A.; Manta, K.; Fuda, M.R.; Tarnopolsky, M.A. Novel Multi-Ingredient Supplement Facilitates Weight Loss and Improves Body Composition in Overweight and Obese Individuals: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2023, 15, 3693. [Google Scholar] [CrossRef] [PubMed]
- Dirks-Naylor, A.J. The Benefits of Coffee on Skeletal Muscle. Life Sci. 2015, 143, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Haidari, F.; Samadi, M.; Mohammadshahi, M.; Jalali, M.T.; Engali, K.A. Energy Restriction Combined with Green Coffee Bean Extract Affects Serum Adipocytokines and The Body Composition in Obese Women. Asia Pac. J. Clin. Nutr. 2017, 26, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Seliem, E.M.; Azab, M.E.; Ismail, R.S.; Nafeaa, A.A.; Alotaibi, B.S.; Negm, W.A. Green Coffee Bean Extract Normalize Obesity-Induced Alterations of Metabolic Parameters in Rats by Upregulating Adiponectin and GLUT4 Levels and Reducing RBP-4 and HOMA-IR. Life 2022, 12, 693. [Google Scholar] [CrossRef] [PubMed]
- Opitz, S.E.; Goodman, B.A.; Keller, M.; Smrke, S.; Wellinger, M.; Schenker, S.; Yeretzian, C. Understanding the Effects of Roasting on Antioxidant Components of Coffee Brews by Coupling On-line ABTS Assay to High Performance Size Exclusion Chromatography. Phytochem. Anal. 2017, 28, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Acidri, R.; Sawai, Y.; Sugimoto, Y.; Handa, T.; Sasagawa, D.; Masunaga, T.; Yamamoto, S.; Nishihara, E. Phytochemical Profile and Antioxidant Capacity of Coffee Plant Organs Compared to Green and Roasted Coffee Beans. Antioxidants 2020, 9, 93. [Google Scholar] [CrossRef] [PubMed]
- Awwad, S.; Issa, R.; Alnsour, L.; Albals, D.; Al-Momani, I. Quantification of Caffeine and Chlorogenic Acid in Green and Roasted Coffee Samples Using HPLC-DAD and Evaluation of The Effect of Degree of Roasting on Their Levels. Molecules 2021, 26, 7502. [Google Scholar] [CrossRef] [PubMed]
- Aispuro-Pérez, A.; Pedraza-Leyva, F.J.; Ochoa-Acosta, A.; Arias-Gastélum, M.; Cárdenas-Torres, F.I.; Amezquita-López, B.A.; Terán, E.; Aispuro-Hernández, E.; Martínez-Téllez, M.Á.; Avena-Bustillos, R.J.; et al. A Functional Beverage from Coffee and Olive Pomace: Polyphenol-Flavonoid Content, Antioxidant, Antihyperglycemic Properties, and Mouse Behavior. Foods 2025, 14, 1331. [Google Scholar] [CrossRef] [PubMed]
- Masek, A.; Latos-Brozio, M.; Kałuzna-Czaplińska, J.; Rosiak, A.; Chrzescijanska, E. Antioxidant Properties of Green Coffee Extract. Forests 2020, 11, 557. [Google Scholar] [CrossRef]
- Dong, W.; Cheng, K.; Hu, R.; Chu, Z.; Zhao, J.; Long, Y. Effect of Microwave Vacuum Drying on the Drying Characteristics, Color, Microstructure, and Antioxidant Activity of Green Coffee Beans. Molecules 2018, 23, 1146. [Google Scholar] [CrossRef] [PubMed]
- Thai, L.Q.; Niwat, C.; Qin, S.; Konsue, N. Supercritical Carbon Dioxide and Ethanol-assisted Extraction of Bioactive Compounds from Bourbon, Catimor, and Caturra Coffee Pulp for Maximized Antioxidant and Therapeutic Properties. Future Foods 2024, 9, 100381. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Peixoto, J.A.B.; Machado, S.; Espírito Santo, L.; Soares, T.F.; Andrade, N.; Azevedo, R.; Almeida, A.; Costa, H.S.; Oliveira, M.B.P.P.; et al. Coffee Pulp from Azores: A Novel Phytochemical-Rich Food with Potential Anti-Diabetic Properties. Foods 2025, 14, 306. [Google Scholar] [CrossRef] [PubMed]
- Preedalikit, W.; Chittasupho, C.; Leelapornpisid, P.; Potprommanee, S.; Kiattisin, K. Comparison of Biological Activities and Protective Effects on PAH-Induced Oxidative Damage of Different Coffee Cherry Pulp Extracts. Foods 2023, 12, 4292. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Espírito Santo, L.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Oliveira, M.B.P.P.; Ferreira, H.; Alves, R.C. Bioactive Potential and Chemical Composition of Coffee By-Products: From Pulp to Silverskin. Foods 2023, 12, 2354. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.d.O.; Honfoga, J.N.B.; Medeiros, L.L.d.; Madruga, M.S.; Bezerra, T.K.A. Obtaining Bioactive Compounds from the Coffee Husk (Coffea arabica L.) Using Different Extraction Methods. Molecules 2021, 26, 46. [Google Scholar] [CrossRef] [PubMed]
- López-Parra, M.B.; Gómez-Domínguez, I.; Iriondo-DeHond, M.; Villamediana Merino, E.; Sánchez-Martín, V.; Mendiola, J.A.; Iriondo-DeHond, A.; del Castillo, M.D. The Impact of the Drying Process on the Antioxidant and Anti-Inflammatory Potential of Dried Ripe Coffee Cherry Pulp Soluble Powder. Foods 2024, 13, 1114. [Google Scholar] [CrossRef] [PubMed]
- Rennert, M. Utilizing the Antioxidant Properties of Coffee By-Products to Stabilize Bioplastics. Proceedings 2023, 89, 7. [Google Scholar] [CrossRef]
- Cangussu, L.B.; Melo, J.C.; Franca, A.S.; Oliveira, L.S. Chemical Characterization of Coffee Husks, a By-Product of Coffea arabica Production. Foods 2021, 10, 3125. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-garcía, L.; Calderón-jaimes, L.S.; Rivera, M.E. Antioxidant Capacity and Total Phenol Content in Coffee and Coffee By-Products Produced and Marketed in Norte of Santander (Colombia). J. Fac. Pharm. Chem. 2014, 21, 228236. [Google Scholar]
- Rennert, M.; Hiller, B.T. Influence of Coffee Variety and Processing on the Properties of Parchments as Functional Bioadditives for Biobased Poly(butylene succinate) Composites. Polymers 2023, 15, 2985. [Google Scholar] [CrossRef] [PubMed]
- Benítez, V.; Rebollo-Hernanz, M.; Aguilera, Y.; Bejerano, S.; Cañas, S.; Martín-Cabreja, M.A. Extruded Coffee Parchment Shows Enhanced Antioxidant, Hypoglycaemic, and Hypolipidemic Properties by the Release of Phenolic Compounds from the Fibre Matrix. Food Funct. 2021, 12, 1097–1110. [Google Scholar] [CrossRef] [PubMed]
- Iriondo-DeHond, A.; García, N.A.; Fernandez-Gomez, B.; Guisantes-Batan, E.; Escobar, F.V.; Blanch, G.P.; Andres, M.I.S.; Sanchez-Fortun, S.; del Castillo, M.D. Validation of Coffee By-Products as Novel Food Ingredients. Innov. Fd. Sci. Emerg. Tech 2018, 51, 194–204. [Google Scholar] [CrossRef]
- Vargas-Sánchez, R.D.; Torres-Martínez, B.; Torrescano-Urrutia, G.R.; Sánchez-Escalante, A. Physicochemical, Techno-functional and Antioxidant Characterization of Coffee Silverskin. Biotecnia 2022, 25, 43–50. [Google Scholar] [CrossRef]
- Koskinakis, S.E.; Stergiopoulos, C.; Vasileiou, C.; Krokida, M. Sustainable Valorization of Coffee Silverskin Waste: Pressurized Liquid Extraction of Bioactive Compounds. Foods 2025, 14, 615. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Saez, N.; Ullate, M.; Martin-Cabrejas, M.A.; Martorell, P.; Genovés, S.; Ramon, D.; del Castillo, M.D. A Novel Antioxidant Beverage for Body Weight Control Based on Coffee Silverskin. Food Chem. 2014, 150, 227–234. [Google Scholar] [CrossRef] [PubMed]
Coffee Part | Ferric Reducing/Antioxidant Power Activity (FRAP) | Radical Scavenging Activity (DPPH) | Free Radical Scavenging (ABTS) | ||||||
---|---|---|---|---|---|---|---|---|---|
Coffee seed | 100.164 ± 0.332 (µmol Fe2+/g dw) [1] | 1104.4 ± 323.3 (µmol Trolox g−1 Sample) [28] | 5.50 NS ± 1.00 (mmol TE/L) [34] | 65.875 ± 1.129 (µmol trolox/g dw) [33] | 98.5 ± 0.42 (mmolT/100 g) [35] | 24.533 ± 0.202 (µmol trolox/g dw) [1] | 110.1 ± 0.94 (mmolT/100 g) [35] | 325.5 ± 81.0 (µmol Trolox g−1 Sample) [28] | 20.62 ± 0.06 (gTrolox/100 g DW) [36] |
Coffee pulp | 35.41 ± 0.21 (mmol TE/g) [37] | 487.47 ± 7.34 (µmol FSE/g dw) [38] | 5.19 ± 0.60 (mg TE/g) [37] | 0.77 ± 0.10 (g/100 g dw) [39] | 73.10 ± 4.27 (%) [7]. | 21.49 ± 1.62 (mg TE/g dw) [38] | 98.2 ± 0.8 (µM Trolox/g) [40] | 52.3 ± 4.3 (µM Trolox/g) [40] | 46.2 ± 2.2 (µM Trolox/g) [40] |
Coffee husk | 4.57 ± 0.21 (g/100 g dw) [39] | 3136.4 ± 0.1 (μmol TE/g) [41] | 0.29 ± 0.11 (g/100 g dw) [39] | 78.56 ± 29.18 (mg eq. of CGA/g) [42] | 84.95 ± 0.02 (%) [41] | 97.21 ± 0.01 (%) [41] | 249.25 ± 7.06 (mg eq. of CGA/g) [42] | 17.48 (mmol TE/100 g dw) [43] | 755.9 ± 47.97 (µmol Trolox.g −1) [44] |
Coffee parchment | 0.35 ± 0.02 (g/100 g dw) [39] | 10.72 ± 0.000 (μmol Etrolox/ g) [45] | 0.05 ± 0.00 (g/100 g dw) [39] | 2.75 (mmol TE/100 g dw) [46] | 0.77 (mmol TE/100 g dw) [46] | 5.36 (mmol TE/100 g dw) [46] | 2.94 (mmol TE/100 g dw) [46] | 32.2 (mg TE/g) [47] | 202.2 ± 39.3 (mg CGA eq./g) [48] |
Coffee silver skin | 4.05 ± 0.12 (g/100 g dw) [39] | 1.55 ± 0.23 (mg Fe2+/g) [49] | 0.19 ± 0.05 (g/100 g dw) [39] | 39.42 ± 2.12 (%DPPH• inhibition) [49] | 144.7 (mg TE/g) [50] | 80.22 ± 0.47 (%ABTS inhibition •+) [49] | 169.5 ± 26.7 (mg CGA eq./g) [48] | 87.89 ± 2.41 (%ABTS inhibition •+) [49] | 2.8 (µmoles eq. CGA/mL) [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Abreu, S.A.; Álvarez-Martínez, F.J. Health Effects of Coffee Products on Oxidative Stress-Related Metabolic Disorders: An Updated Perspective. Proceedings 2025, 119, 9. https://doi.org/10.3390/proceedings2025119009
Hernández-Abreu SA, Álvarez-Martínez FJ. Health Effects of Coffee Products on Oxidative Stress-Related Metabolic Disorders: An Updated Perspective. Proceedings. 2025; 119(1):9. https://doi.org/10.3390/proceedings2025119009
Chicago/Turabian StyleHernández-Abreu, Santa Anabel, and Francisco Javier Álvarez-Martínez. 2025. "Health Effects of Coffee Products on Oxidative Stress-Related Metabolic Disorders: An Updated Perspective" Proceedings 119, no. 1: 9. https://doi.org/10.3390/proceedings2025119009
APA StyleHernández-Abreu, S. A., & Álvarez-Martínez, F. J. (2025). Health Effects of Coffee Products on Oxidative Stress-Related Metabolic Disorders: An Updated Perspective. Proceedings, 119(1), 9. https://doi.org/10.3390/proceedings2025119009