Antioxidant Capacity of Colombian Tropical Fruits with Dietary Potential to Reduce Risk of Cardiovascular Diseases †
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CVD | Cardiovascular disease |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
FRAP | Ferric Reducing Antioxidant Power |
ROS | Reactive oxygen species |
PUFA | Polyunsaturated fatty acid |
WHO | World Health Organization |
NO | Nitric oxide |
LDL | Low-density lipoprotein |
References
- Global Burden of Disease. 2024. Available online: https://ourworldindata.org/grapher/burden-of-disease?tab=chart&country=~COL (accessed on 24 June 2025).
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.P.M.; Souza, A.C.R.; Vasconcelos, A.R.; Prado, P.S.; Name, J.J. Antioxidant and anti-inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review). Int. J. Mol. Med. 2021, 47, 37–48. [Google Scholar] [CrossRef]
- Ma, R.; Zhou, X.; Zhang, G.; Wu, H.; Lu, Y.; Liu, F.; Chang, Y.; Ding, Y. Association between composite dietary antioxidant index and coronary heart disease among US adults: A cross-sectional analysis. BMC Public Health 2023, 23, 2426. [Google Scholar] [CrossRef] [PubMed]
- Zujko, M.E.; Waśkiewicz, A.; Witkowska, A.M.; Szcześniewska, D.; Zdrojewski, T.; Kozakiewicz, K.; Drygas, W. Dietary Total Antioxidant Capacity and Dietary Polyphenol Intake and Prevalence of Metabolic Syndrome in Polish Adults: A Nationwide Study. Oxidative Med. Cell. Longev. 2018, 7487816. [Google Scholar] [CrossRef]
- Contreras, G. Reporte de Industria Subsector Frutícola. 2018. Available online: https://bdigital.uexternado.edu.co/server/api/core/bitstreams/de836ec2-d466-4a13-968d-d3988ebe31c6/content#:~:text=Por%20otra%20parte%2C%20seg%C3%BAn%20cifras,d%C3%ADa%20que%20recomienda%20la%20OMS (accessed on 24 June 2025).
- Silva, K.B.; Pinheiro, C.T.S.; Soares, C.R.M.; Souza, M.A.; Matos-Rocha, T.J.; Fonseca, S.A.; Pavão, J.M.S.J.; Costa, J.G.; Pires, L.L.S.; Santos, A.F. Phytochemical characterization, antioxidant potential and antimicrobial activity of Averrhoa carambola L. (Oxalidaceae) against multiresistant pathogens. Braz. J. Biol. 2021, 81, 509–515. [Google Scholar] [CrossRef]
- Lakmal, K.; Yasawardene, P.; Jayarajah, U.; Seneviratne, S.L. Nutritional and medicinal properties of Star fruit (Averrhoa carambola): A review. Food Sci. Nutr. 2021, 9, 1810–1823. [Google Scholar] [CrossRef]
- Sayago-Ayerdi, S.; García-Martínez, D.L.; Ramírez-Castillo, A.C.; Ramírez-Concepción, H.R.; Viuda-Martos, M. Tropical Fruits and Their Co-Products as Bioactive Compounds and Their Health Effects: A Review. Foods 2021, 10, 1952. [Google Scholar] [CrossRef]
- Martínez-Ramos, T.; Benedito-Fort, J.; Watson, N.J.; Ruiz-Lopez, I.I.; Che-Galicia, G.; Corona-Jiménez, E. Efecto de la composición del solvente y su interacción con la energía ultrasónica en la extracción asistida por ultrasonidos de compuestos fenólicos de cáscaras de mango (Mangifera indica L.). Proces. Aliment. Bioprod. 2020, 122, 41–54. [Google Scholar] [CrossRef]
- Corrales-Bernal, A.; Maldonado, M.E.; Urango, L.A.; Franco, M.C.; Rojano, B.A. Mango de azúcar (Mangifera indica), variedad de Colombia: Características antioxidantes, nutricionales y sensoriales. Rev. Chil. Nutr. 2014, 41, 312–318. [Google Scholar] [CrossRef]
- Jeon, Y.A.; Chung, S.W.; Kim, S.C.; Lee, Y.J. Comprehensive Assessment of Antioxidant and Anti-Inflammatory Properties of Papaya Extracts. Foods 2022, 11, 3211. [Google Scholar] [CrossRef]
- Arrazola-Paternina, G.; Villadiego, L.F.; Alvis-Bermudez, A. Nutraceutical, thermophysical and textural characteristics of papaya (Carica papaya L.) and incidence for post-harvest management. Heliyon 2022, 8, e09231. [Google Scholar] [CrossRef] [PubMed]
- Ángel-Martín, A.; Vaillant, F.; Moreno-Castellanos, N. Daily Consumption of Golden Berry (Physalis peruviana) Has Been Shown to Halt the Progression of Insulin Resistance and Obesity in Obese Rats with Metabolic Syndrome. Nutrients 2024, 16, 365. [Google Scholar] [CrossRef] [PubMed]
- Corrales-Bernal, A.; Vergara, A.I.; Rojano, B.; Yahia, E.; Maldonado, M.E. Características nutricionales y antioxidantes de la uchuva colombiana (Physalys peruviana L.) en tres estadios de su maduración. Arch. Latinoam. Nutr. 2015, 65, 4. Available online: http://www.alanrevista.org/ediciones/2015/4/art-6/ (accessed on 24 June 2025).
- Moreno, E.; Ortiz, B.L.; Restrepo, L.P. Contenido total de fenoles y actividad antioxidante de pulpa de seis frutas tropicales. Rev. Colomb. Química 2014, 43, 41–48. Available online: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-28042014000300006&lng=en&tlng=es (accessed on 24 June 2025). [CrossRef]
- Suárez-Montenegro, Z.J.; Ballesteros-Vivas, D.; Gallego, R.; Valdés, A.; Sánchez-Martínez, J.D.; Parada-Alfonso, F.; Ibáñez, E.; Cifuentes, A. Neuroprotective Potential of Tamarillo (Cyphomandra betacea) Epicarp Extracts Obtained by Sustainable Extraction Process. Front. Nutr. 2021, 8, 769617. [Google Scholar] [CrossRef]
- Toscano-Oviedo, M.A.; García-Zapateiro, L.A.; Quintana, S.E. Tropical fruits as a potential source for the recovery of bioactive compounds: Tamarindus indica L., Annona muricata, Psidium guajava and Mangifera indica. J. Food Sci. Technol. 2024, 61, 2027–2035. [Google Scholar] [CrossRef]
- Oliveira, B.G.; Pimentel, E.F.; Pereira, A.C.H.; Tosato, F.; Pinto, F.E.; Ventura, J.A.; Endringer, D.C.; Romão, W. Phenolic and glycidic profiling of bananas Musa spp. associated with maturation stage and cancer chemoprevention activities. Microchem. J. 2020, 153, 104391. [Google Scholar] [CrossRef]
- Incalza, M.A.; D’Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul. Pharmacol. 2018, 100, 1–19. [Google Scholar] [CrossRef]
- Montero, M.L.; Rojas-Garbanzo, C.; Usaga, J.; Pérez, A.M. Nutritional composition, content of bioactive compounds, and hydrophilic antioxidant capacity of selected Costa Rican fruits. Agron. Mesoam. 2022, 33, 46175. [Google Scholar] [CrossRef]
- Carranza-Téllez, J.; Torres-Hernández, D.M.; Contreras-Martínez, C.S.; García-González, J.M.; Carranza-Concha, J. Influencia en la capacidad antioxidante de los fenoles totales, vitamina C y color en frutas. Rev. Fitotec. Mex. 2024, 47, 19–26. [Google Scholar] [CrossRef]
- Santos, D.I.; Martins, C.F.; Amaral, R.A.; Brito, L.; Saraiva, J.A.; Vicente, A.A.; Moldão-Martins, M. Pineapple (Ananas comosus L.) By-Products Valorization: Novel Bio Ingredients for Functional Foods. Molecules 2021, 26, 3216. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, I.; Wilairatana, P.; Saqib, F.; Nasir, B.; Wahid, M.; Latif, M.F.; Iqbal, A.; Naz, R.; Mubarak, M.S. Plant Polyphenols and Their Potential Benefits on Cardiovascular Health: A Review. Molecules 2023, 28, 6403. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Shao, Y.; Chen, X.; Wang, N.; Zhan, Y.; Gong, B.; Zhang, R.; Li, L. Associations of composite dietary antioxidant index with premature death and all-cause mortality: A cohort study. BMC Public Health 2025, 25, 796. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, Y. Relationship between Composite Dietary Antioxidant Index and Aging. Healthcare 2023, 11, 2722. [Google Scholar] [CrossRef]
- Nascimento-Souza, M.A.; Paiva, P.G.; Martino, H.S.D.; Ribeiro, A.Q. Dietary total antioxidant capacity as a tool in health outcomes in middle-aged and older adults: A systematic review. Crit. Rev. Food Sci. Nutr. 2018, 58, 905–912. [Google Scholar] [CrossRef]
- Shishehbor, F.; Joola, P.; Malehi, A.S.; Jalalifar, M.A. The effect of black seed raisin on some cardiovascular risk factors, serum malondialdehyde, and total antioxidant capacity in hyperlipidemic patients: A randomized controlled trials. Ir. J. Med. Sci. 2022, 191, 195–204. [Google Scholar] [CrossRef]
- Parohan, M.; Anjom-Shoae, J.; Nasiri, M.; Khodadost, M.; Khatibi, S.R.; Sadeghi, O. Dietary total antioxidant capacity and mortality from all causes, cardiovascular disease and cancer: A systematic review and dose-response meta-analysis of prospective cohort studies. Eur. J. Nutr. 2019, 58, 2175–2189. [Google Scholar] [CrossRef]
- de Lima-Reis, S.R.; Silva, T.A.; Costa, L.S.A.; Volp, A.C.P.; Rios-Santos, F.; Reis, É.M.; Bassi-Branco, C.L. Serum levels of vitamin A, selenium, and better dietary total antioxidant capacity are related to lower oxidative DNA damage: A cross-sectional study of individuals at cardiovascular risk. J. Nutr. Biochem. 2022, 107, 109070. [Google Scholar] [CrossRef]
- Zujko, M.E.; Waśkiewicz, A.; Witkowska, A.M.; Cicha-Mikołajczyk, A.; Zujko, K.; Drygas, W. Dietary Total Antioxidant Capacity-A New Indicator of Healthy Diet Quality in Cardiovascular Diseases: A Polish Cross-Sectional Study. Nutrients 2022, 14, 3219. [Google Scholar] [CrossRef]
Fruit | Phenolic Compound Content (Eq of Gallic Acid/100 g Sample) | DPHH Method (µmol Trolox/100 g Sample | FRAP Method (µmol Trolox/g Sample) |
---|---|---|---|
Curuba [16] | 638 | 55 | 148.1 |
Avocado [16] | 0.20–582.9 | 165.10 | 0.8 |
Tamarillo [16,17] | 92–300 | 75 | 50 |
Lulo [16] | 310 | 60 | 52 |
Gulupa [16] | 270 | 366 | 464 |
Papaya [12,13] | 240–263 | 14.62 | 71.77 |
Golden berries [15] | 59.2–265 | 243.6 | 345.2 |
Carambolo [7] | 143 | 429.55 | 7106.72 |
Guava [9] | 199.21 | 26.2 | 464 |
Mango [10,11] | 217.6–652.6 | 23.7–174 | 3.18 |
Banana [19] | 302.58–1323.70 | 8.79 | 11.5 |
Pineapple [9] | 159.3–990.76 | 34.80–36.45 | 25.60–27.09 |
Tamarind [18] | 10.82–20.23 | 293.93 | 12.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardila Meléndez, C.M. Antioxidant Capacity of Colombian Tropical Fruits with Dietary Potential to Reduce Risk of Cardiovascular Diseases. Proceedings 2025, 119, 7. https://doi.org/10.3390/proceedings2025119007
Ardila Meléndez CM. Antioxidant Capacity of Colombian Tropical Fruits with Dietary Potential to Reduce Risk of Cardiovascular Diseases. Proceedings. 2025; 119(1):7. https://doi.org/10.3390/proceedings2025119007
Chicago/Turabian StyleArdila Meléndez, Claudia Milena. 2025. "Antioxidant Capacity of Colombian Tropical Fruits with Dietary Potential to Reduce Risk of Cardiovascular Diseases" Proceedings 119, no. 1: 7. https://doi.org/10.3390/proceedings2025119007
APA StyleArdila Meléndez, C. M. (2025). Antioxidant Capacity of Colombian Tropical Fruits with Dietary Potential to Reduce Risk of Cardiovascular Diseases. Proceedings, 119(1), 7. https://doi.org/10.3390/proceedings2025119007