Oxidative Stress, Inflammation, and Obesity: Insights into Mechanism and Therapeutic Targets †
Abstract
1. Methodology of Literature Search
2. Introduction
3. Pathophysiology of Obesity
4. Oxidative Stress in Obesity
5. Inflammatory Pathways and Adipokines
6. Experimental and Clinical Evidence
6.1. Animal Models
- ROS in obese mice (KKAy model): In obese KKAy mice, excessive ROS generation in white adipose tissue leads to reduced adiponectin levels and the development of insulin resistance, closely mimicking human metabolic syndrome [17].
6.2. Human Studies
- Oxidative stress and insulin resistance in obese men: A clinical study of Japanese men showed that levels of the oxidative stress marker 8-epi-prostaglandin F2α were significantly elevated in individuals with high BMIs and insulin resistance, suggesting a direct link between obesity-induced oxidative stress and impaired insulin action [20].
- Systemic oxidative stress in obesity (Framingham Study): Data from a large population-based cohort demonstrated that individuals with higher BMIs exhibited increased levels of plasma oxidized LDL and reduced antioxidant capacity, establishing obesity as a systemic pro-oxidative state [21].
- TNF-α and oxidative stress in obese humans: Obese individuals exhibit significantly elevated serum TNF-α levels and oxidative stress markers, such as lipid peroxides, highlighting the coexistence of inflammation and oxidative imbalance in obesity [22].
6.3. Biochemical Markers
- ROS and antioxidant imbalance in metabolic syndrome: Oxidative stress contributes to insulin resistance by impairing insulin receptor signaling and also promotes β-cell dysfunction and endothelial damage through excessive ROS production [22].
- ROS, inflammation, and metabolic markers: Elevated markers such as MDA and 8-OHdG, along with reduced antioxidant enzymes like SOD and GPx, have been observed in patients with metabolic syndrome, supporting the role of oxidative stress as a central mechanism in obesity-related disorders [23].
- While findings from animal models, such as KKAy mice or adiponectin-deficient mice, offer critical mechanistic insights, they may not fully translate to human physiology due to species-specific differences in adipokine expression, metabolic responses, and oxidative stress regulation. Therefore, caution must be exercised when extrapolating preclinical data to clinical outcomes, emphasizing the need for well-designed human studies to validate these findings.
7. Comorbidities of Obesity
8. Therapeutic Strategies
- Antioxidants: vitamins C and E, resveratrol, and NAC improve redox status [25].
- Adipokine Modulation: pioglitazone increases adiponectin, improving insulin sensitivity [26].
- Lifestyle: exercise and antioxidant-rich diets reduce ROS and improve inflammatory profiles [27].
- Novel Agents: GLP-1 agonists and SGLT2 inhibitors demonstrate OS-lowering effects [28].
9. Conclusions
10. Future Directions
11. Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pieri, M.; De Luca, A.; Greco, B.; Cioffi, G.; Vassalle, C. Role of oxidative stress on insulin resistance in diet-induced obesity mice. Int. J. Mol. Sci. 2023, 24, 12088. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N.; Samee, W.; Akhtar, M.; Rehman, M.S.; Yang, G.; et al. Oxidative stress and inflammation: What polyphenols can do for us? Oxidative Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef]
- Celinski, K.; Stawarski, A. Cytokine imbalance and systemic inflammation in obesity. Nutrients 2021, 13, 3795. [Google Scholar]
- Kirichenko, T.V.; Markina, Y.V.; Shkurat, T.P.; Zharikova, A.A.; Sobenin, I.A. The role of adipokines in inflammatory mechanisms of obesity. Int. J. Mol. Sci. 2022, 23, 14982. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Walsh, K. Adiponectin as an anti-inflammatory factor. Clin. Chim. Acta 2006, 380, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Bañuls, C.; Rovira-Llopis, S.; Lopez-Domenech, S.; Diaz-Morales, N.; Blas-Garcia, A.; Veses, S.; Morillas, C.; Victor, V.M.; Rocha, M.; Hernandez-Mijares, A. Oxidative and endoplasmic reticulum stress in leukocytes from obese subjects. Int. J. Obes. 2017, 41, 1556–1563. [Google Scholar] [CrossRef]
- Rosen, E.D.; Spiegelman, B.M. What we talk about when we talk about fat. Cell 2014, 156, 20–44. [Google Scholar] [CrossRef]
- Cypess, A.M.; Kahn, C.R. Brown fat as a therapy for obesity and diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 143–149. [Google Scholar] [CrossRef]
- Harms, M.; Seale, P. Brown and beige fat: Development, function and therapeutic potential. Nat. Med. 2013, 19, 1252–1263. [Google Scholar] [CrossRef]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic adipose tissue inflammation linking obesity to T2DM. Front. Immunol. 2020, 11, 563. [Google Scholar]
- Kadowaki, T.; Yamauchi, T. Adiponectin and adiponectin receptors. Nat. Rev. Mol. Cell Biol. 2005, 6, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.B. The complex role of adipokines in obesity, inflammation, and autoimmunity. Nat. Rev. Endocrinol. 2021, 17, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martínez, E.; Cachofeiro, V. Oxidative stress in obesity. Antioxidants 2022, 11, 639. [Google Scholar] [CrossRef]
- Imbard, A.; Meriem, F.Z.; Touati, N. Evaluation of Mn-superoxide dismutase and catalase gene expression in childhood obesity: Association with insulin resistance. Obes. Res. Clin. Pract. 2018, 12, 167–173. [Google Scholar] [CrossRef]
- Caballero, F. Functional foods and gut microbiome in obesity and metabolic syndrome. Appl. Sci. 2022, 14, 5578. [Google Scholar]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.G.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: A critical component in human diseases. Int. J. Mol. Sci. 2015, 16, 378–400. [Google Scholar] [CrossRef]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004, 114, 1752–1761. [Google Scholar] [CrossRef]
- Maeda, N.; Shimomura, I.; Kishida, K.; Nishizawa, H.; Matsuda, M.; Nagaretani, H.; Furuyama, N.; Kondo, H.; Takahashi, M.; Arita, Y.; et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med. 2002, 8, 731–737. [Google Scholar] [CrossRef]
- Ye, J.; Gao, Z.; Yin, J.; He, Q.; Zhou, Z.; Choung, S.Y.; Wang, Y.; Orci, L.; Unger, R.H.; Liu, F.; et al. A high-fat diet induces adipose tissue fibrosis and inflammation through activation of TGF-β signaling. J. Biol. Chem. 2007, 282, 9687–9694. [Google Scholar]
- Urakawa, H.; Katsuki, A.; Sumida, Y.; Gabazza, E.C.; Murashima, S.; Morioka, K.; Maruyama, N.; Kitagawa, N.; Tanaka, T.; Hori, Y.; et al. Oxidative stress is associated with adiposity and insulin resistance in men. J. Clin. Endocrinol. Metab. 2003, 88, 4673–4676. [Google Scholar] [CrossRef]
- Keaney, J.F., Jr.; Larson, M.G.; Vasan, R.S.; Wilson, P.W.; Lipinska, I.; Corey, D.; Massaro, J.M.; Sutherland, P.; Vita, J.A.; Benjamin, E.J. Obesity and systemic oxidative stress: Clinical correlates of oxidative stress in the Framingham Study. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Alenezi, S.A.; Khan, R.; Snell, L.; Aboeldalyl, S.; Amer, S. The role of NLRP3 inflammasome in obesity and PCOS—A systematic review and meta-analysis. Int. J. Mol. Sci. 2023, 24, 10976. [Google Scholar] [CrossRef]
- Moorthy, M.; Sundralingam, U.; Palanisamy, U.D. Polyphenols as prebiotics in the management of high-fat diet-induced obesity: A systematic review of animal studies. Foods 2021, 10, 299. [Google Scholar] [CrossRef]
- Manna, P.; Jain, S.K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated comorbidities—A review. J. Transl. Med. 2015, 13, 97. [Google Scholar] [CrossRef]
- Martínez, J.A.; Milagro, F.I.; De Miguel, C. Antioxidant supplementation in obesity and metabolic syndrome: Current evidence and perspectives. Nutr. Res. Rev. 2020, 33, 1–26. [Google Scholar]
- Nolan, J.J.; Ludvik, B.; Beerdsen, P.; Joyce, M.; Olefsky, J. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N. Engl. J. Med. 1994, 331, 1188–1193. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cabrera, M.C.; Domenech, E.; Viña, J. Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radic. Biol. Med. 2008, 44, 126–131. [Google Scholar] [CrossRef]
- Koufakis, T.; Kotsa, K.; Germanidis, G. The emerging role of SGLT2 inhibitors and GLP-1 receptor agonists in oxidative stress reduction. Antioxidants 2021, 10, 708. [Google Scholar] [CrossRef]
- Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; van de Weijer, T.; Goossens, G.H.; Hoeks, J.; van der Krieken, S.; Ryu, D.; Kersten, S.; et al. Calorie restriction-like effects of 30 days of resveratrol supplementation in obese humans. Cell Metab. 2011, 14, 612–622. [Google Scholar] [CrossRef]
- Okada, T.; Yamamoto, H.; Tanaka, A.; Maekawa, K. AdipoRon ameliorates insulin resistance and dyslipidemia in db/db obese mice via AMPK/PPARα activation. J. Lipid Res. 2024, 65, 117–126. [Google Scholar]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
Model Type | Population/Model | Parameters | Findings | References |
---|---|---|---|---|
Animal | KKAy mice | ROS, MDA, SOD, GSH | Insulin resistance, OS elevation | [14] |
Animal | Adiponectin KO mice | Adiponectin, Insulin | Increased insulin resistance | [18] |
Animal | High-fat diet mice | TGf-β, fibrosis | Fibrosis, inflammation | [19] |
Human | Obese men | 8-epi-PGF2α, HOMA-IR | OS correlates with insulin resistance | [20] |
Human | Framingham cohort | OxLDL, antioxidant levels | Higher BMI = higher OS | [21] |
Human | Obese adults | TNF-α, lipid peroxides | Inflammatory OS profile | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, B.S.; Patil, J.K.; Chaudhari, H.S.; Patil, B.S. Oxidative Stress, Inflammation, and Obesity: Insights into Mechanism and Therapeutic Targets. Proceedings 2025, 119, 6. https://doi.org/10.3390/proceedings2025119006
Patil BS, Patil JK, Chaudhari HS, Patil BS. Oxidative Stress, Inflammation, and Obesity: Insights into Mechanism and Therapeutic Targets. Proceedings. 2025; 119(1):6. https://doi.org/10.3390/proceedings2025119006
Chicago/Turabian StylePatil, Bhagyashri Sandip, Javesh Kashinath Patil, Hemangi Somnath Chaudhari, and Bhagyashri Sunil Patil. 2025. "Oxidative Stress, Inflammation, and Obesity: Insights into Mechanism and Therapeutic Targets" Proceedings 119, no. 1: 6. https://doi.org/10.3390/proceedings2025119006
APA StylePatil, B. S., Patil, J. K., Chaudhari, H. S., & Patil, B. S. (2025). Oxidative Stress, Inflammation, and Obesity: Insights into Mechanism and Therapeutic Targets. Proceedings, 119(1), 6. https://doi.org/10.3390/proceedings2025119006