Antioxidant Properties of S-Nitrosoglutathione and Nanotechnologies †
Abstract
:1. Introduction
2. Antioxidant Power of NO and GSNO
3. Nanotechnologies Supply
Funding
Acknowledgments
Conflicts of Interest
References
- Maron, B.A.; Tang, S.S.; Loscalzo, J. S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system. Antiox. Redox. Signal 2012, 18, 270–287. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Steenbergen, C.; Murphy, E. S-nitrosylation: NO-related redox signaling to protect against oxidative stress. Antioxid. Redox. Signal 2006, 8, 1693–1705. [Google Scholar] [CrossRef] [PubMed]
- Gaucher, C.; Boudier, A.; Dahboul, F.; Parent, M.; Leroy, P. S-nitrosation/Denitrosation in cardiovascular pathologies: facts and concepts for the rational design of S-nitrosothiols. Curr. Pharm. Des. 2013, 19, 458–472. [Google Scholar] [CrossRef] [PubMed]
- Belcastro, E.; Wu, W.; Fries-Raeth, I.; Corti, A.; Pompella, A.; Leroy, P.; Lartaud, I.; Gaucher, C. Oxidative stress enhances and modulates protein S-nitrosation in smooth muscle cells exposed to S-nitrosoglutathione. Nitric. Oxide 2017, 69, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Belcastro, E.; Gaucher, C.; Corti, A.; Leroy, P.; Lartaud, I.; Pompella, A. Regulation of protein function by S-nitrosation and S-glutathionylation: processes and targets in cardiovascular pathophysiology. Biol. Chem. 2017, 398, 1267–1293. [Google Scholar] [CrossRef]
- Huang, B.; Chen, S.C.; Wang, D.L. Shear flow increases S-nitrosylation of proteins in endothelial cells. Cardiovasc. Res. 2009, 83, 536–546. [Google Scholar] [CrossRef]
- Hoffmann, J.; Dimmeler, S.; Haendeler, J. Shear stress increases the amount of S-nitrosylated molecules in endothelial cells: Important role for signal transduction. FEBS Lett. 2003, 551, 153–158. [Google Scholar] [CrossRef]
- Hoffmann, J.; Haendeler, J.; Zeiher, A.M.; Dimmeler, S. TNF-α and oxLDL reduce protein S-nitrosylation in endothelial cells. J. Biol. Chem. 2001, 276, 41383–41387. [Google Scholar] [CrossRef]
- Selemidis, S.; Dusting, G.J.; Peshavariya, H.; Kemp-Harper, B.K.; Drummond, G.R. Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells. Cardiovasc. Res. 2007, 75, 349–358. [Google Scholar] [CrossRef]
- Liu, W.R.; Nakamura, H.; Shioji, K.; Tanito, M.; Oka, S.; Ahsan, M.K.; Son, A.; Ishii, Y.; Kishimoto, C.; Yodoi, Y. Thioredoxin-1 ameliorates myosin-induced autoimmune myocarditis by suppressing chemokine expressions and leukocyte chemotaxis in mice. Circulation 2004, 110, 1276–1283. [Google Scholar] [CrossRef]
- Haendeler, J.; Hoffmann, J.; Tischler, V.; Berk, B.C.; Zeiher, A.M.; Dimmeler, S. Redox regulatory and antiapoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat. Cell Biol. 2002, 4, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Marshall, H.E.; Merchant, K.; Stamler, J.S. Nitrosation and oxidation in the regulation of gene expression. FASEB J. 2000, 14, 1889–1900. [Google Scholar] [CrossRef] [PubMed]
- Xanthoudakis, S.; Miao, G.; Wang, F.; Pan, Y.C.E.; Curran, T. Redox activation of Fos-Jun DNA-binding activity is mediated by a DNA-repair enzyme. EMBO J. 1992, 11, 3323–3335. [Google Scholar] [CrossRef] [PubMed]
- Stuehr, D.J.; Griffith, O.W. Mammalian nitric oxide synthases. Adv. Enzymol. Relat. Areas Mol. Biol. 1992, 65, 287–346. [Google Scholar] [PubMed]
- Fleser, P.S.; Nuthakki, V.K.; Malinzak, L.E.; Callahan, R.E.; Seymour, M.L.; Reynolds, M.M.; Merz, S.I.; Meyerhoff, M.E.; Bendick, P.J.; Zelenock, G.B.; et al. Nitric oxide–releasing biopolymers inhibit thrombus formation in a sheep model of arteriovenous bridge grafts. J. Vasc. Surg. 2004, 40, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Wan, A.; Li, H. Ag2S quantum dots conjugated chitosan nanospheres toward light-triggered nitric oxide release and near-infrared fluorescence imaging. Langmuir 2013, 29, 15032–15042. [Google Scholar] [CrossRef]
- Jeh, H.S.; Lu, S.; George, S.C. Encapsulation of PROLI/NO in biodegradable microparticles. J. Microencapsul. 2004, 21, 3–13. [Google Scholar] [CrossRef]
- Frost, M.C.; Meyerhoff, M.E. Synthesis, characterization, and controlled nitric oxide release from S-nitrosothiol-derivatized fumed silica polymer filler particles. J. Biomed. Mater. Res. A 2005, 72, 409–419. [Google Scholar] [CrossRef]
- Bonetti, J.; Zhou, Y.; Parent, M.; Clarot, I.; Yu, H.; Fries-Raeth, I.; Leroy, P.; Lartaud, I.; Gaucher, C. Intestinal absorption of S-nitrosothiols: Permeability and transport mechanisms. Biochem. Pharmacol. 2018, 155, 21–31. [Google Scholar] [CrossRef]
- Wu, W.; Gaucher, C.; Diab, R.; Fries, I.; Xiao, Y.-L.; Hu, X.-M.; Maincent, P.; Sapin-Minet, A. Time lasting S-nitrosoglutathione polymeric nanoparticles delay cellular protein S-nitrosation. Eur. J. Pharm. Biopharm. 2015, 89, 1–8. [Google Scholar] [CrossRef]
- Wu, W.; Gaucher, C.; Fries, I.; Hu, X.-M.; Maincent, P.; Sapin-Minet, A. Polymer nanocomposite particles of S-nitrosoglutathione: a suitable formulation for protection and sustained oral delivery. Int. J. Pharm. 2015, 495, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Perrin-Sarrado, C.; Ming, H.; Lartaud, I.; Maincent, P.; Hu, X.-M.; Sapin-Minet, A.; Gaucher, C. Polymer nanocomposites enhance S-nitrosoglutathione intestinal absorption and promote the formation of releasable nitric oxide stores in rat aorta. Nanomed. Nanotechnol. 2016, 12, 1795–1803. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parent, M.; Zhou, Y.; Bonetti, J.; Perrin-Sarrado, C.; Lartaud, I.; Sapin-Minet, A.; Gaucher, C. Antioxidant Properties of S-Nitrosoglutathione and Nanotechnologies. Proceedings 2019, 11, 15. https://doi.org/10.3390/proceedings2019011015
Parent M, Zhou Y, Bonetti J, Perrin-Sarrado C, Lartaud I, Sapin-Minet A, Gaucher C. Antioxidant Properties of S-Nitrosoglutathione and Nanotechnologies. Proceedings. 2019; 11(1):15. https://doi.org/10.3390/proceedings2019011015
Chicago/Turabian StyleParent, Marianne, Yi Zhou, Justine Bonetti, Caroline Perrin-Sarrado, Isabelle Lartaud, Anne Sapin-Minet, and Caroline Gaucher. 2019. "Antioxidant Properties of S-Nitrosoglutathione and Nanotechnologies" Proceedings 11, no. 1: 15. https://doi.org/10.3390/proceedings2019011015
APA StyleParent, M., Zhou, Y., Bonetti, J., Perrin-Sarrado, C., Lartaud, I., Sapin-Minet, A., & Gaucher, C. (2019). Antioxidant Properties of S-Nitrosoglutathione and Nanotechnologies. Proceedings, 11(1), 15. https://doi.org/10.3390/proceedings2019011015