All Inkjet-Printed B Field Sensor †
Abstract
:1. Introduction
2. An Overview of the System Developed
3. Experimental Results
3.1. Assessment of the Beam Natural Frequency and the Printed Strain Gauge
3.2. The IJP-BField Sensor Response
4. Conclusions
Conflicts of Interest
References
- Todaro, M.T.; Sileo, L.; De Vittorio, M. Magnetic Field Sensors Based on Microelectromechanical Systems (MEMS) Technology. In Magnetic Sensors—Principles and Applications; Kuang, K., Ed.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0232-8. [Google Scholar]
- Andò, B.; Baglio, S. Inkjet-Printed Sensors: A Useful Approach for Low Cost, Rapid Prototyping. IEEE Instrum. Meas. Mag. 2011, 14, 36–40. [Google Scholar] [CrossRef]
- Kubik, J.; Pavel, L.; Ripka, P. PCB racetrack fluxgate sensor with improved temperature stability. Sens. Actuators A Phys. 2006, 130–131, 184–188. [Google Scholar] [CrossRef]
- Baschirotto, A.; Dallago, E.; Malcovati, P.; Marchesi, M.; Venchi, G. Development and Comparative Analysis of Fluxgate Magnetic Sensor Structures in PCB Technology. IEEE Trans. Magn. 2006, 42, 1670–1680. [Google Scholar] [CrossRef]
- Kubík, J.; Pavel, L.; Ripka, P.; Kašpar, P. Low-Power Printed Circuit Board Fluxgate Sensor. IEEE Sens. J. 2007, 7, 179–183. [Google Scholar] [CrossRef]
- Mäntysalo, M.; Pekkanen, V.; Kaija, K.; Niittynen, J.; Koskinen, S.; Halonen, E.; Mansikkamaki, P.; Hameenoja, O. Capability of Inkjet Technology in Electronics Manufacturing. In Proceedings of the Electronic Components and Technology Conference, San Diego, CA, USA, 26–29 May 2009; pp. 1330–1336. [Google Scholar]
- Unander, T.; Nilsson, H.E. Characterization of printed moisture sensors in packaging surveillance applications. IEEE Sens. J. 2009, 9, 922–928. [Google Scholar] [CrossRef]
- Lakhmi, R.; Debeda, H.; Dufour, I.; Lucat, C. Force sensors based on screen-printed cantilevers. IEEE Sens. J. 2010, 10, 1133–1137. [Google Scholar] [CrossRef]
- Jacq, C.; Lüthi, B.; Maeder, T.; Lambercy, O.; Gassert, R.; Ryser, P. Thick-film multi-DOF force/torque sensor for wrist rehabilitation. Sens. Actuators A Phys. 2010, 162, 361–366. [Google Scholar] [CrossRef]
- Crowley, K.; Morrin, A.; Hernandez, A.; O’Malley, E.; Whitten, P.G.; Wallace, G.; Smyth, M.R.; Killard, A.J. Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Int. J. Pure Appl. Anal. Chem. 2008, 77, 710–717. [Google Scholar] [CrossRef]
- Andersson, H.; Manuilskiy, A.; Unander, T.; Lidenmark, C.; Forsberg, S.; Nilsson, H.-E. Inkjet printed silver nanoparticle humidity sensor with memory effect on paper. IEEE Sens. J. 2012, 12, 1901–1905. [Google Scholar] [CrossRef]
- Andò, B.; Baglio, S. All-Inkjet Printed Strain Sensors. IEEE Sens. J. 2013, 13, 4874–4879. [Google Scholar] [CrossRef]
- Lorwongtragool, P.; Sowade, E.; Watthanawisuth, N.; Baumann, R.R.; Kerdcharoen, T. A Novel Wearable Electronic Nose for Healthcare Based on Flexible Printed Chemical Sensor Array. Sensors 2014, 14, 19700–19712. [Google Scholar] [CrossRef] [PubMed]
- Andò, B.; Baglio, S.; Marletta, V.; Pistorio, A. A Contactless InkJet Printed Passive Touch Sensor. In Proceedings of the International Instrumentation and Measurement Technology Conference (I2MTC), Montevideo, Uruguay, 12–15 May 2014. [Google Scholar]
- Andò, B.; Baglio, S.; Lombardo, C.O.; Marletta, V.; Pistorio, A. A Low-Cost Accelerometer Developed by Inkjet Printing Technology. IEEE Trans. Instrum. Meas. 2015, 65, 1242–1248. [Google Scholar] [CrossRef]
- Andò, B.; Baglio, S.; Pasqualeb, G.D.; Pollicino, A.; D’Agata, S.; Gugliuzzo, C.; Lombardo, C.; Re, G. An Inkjet Printed CO2 Gas Sensor. In Proceedings of the XXIX Eurosensors, Freiburg, Germany, 6–9 September 2015. [Google Scholar]
Sensor Physical and Electrical Characteristics | |
---|---|
Beam Substrate | Novele™ IJ-220 |
Total Length | 70 mm |
Width | 19 mm |
Substrate Thickness | 140 μm |
Silver Ink Thickness | 200 nm |
Coil Resistance | 25.6 Ω |
Coil Inductance | 84.6 nH |
Coil Track Spacing and Width | 0.5 mm, 2.0 mm |
Strain Gauge Resistance, RS | 123.5 Ω |
Gauge Factor | 1.9 |
Coil Track Spacing and Width | 300 μm, 300 μm |
Driving Current [mA] @ 9.1 Hz | Responsivity [(Ω/Ω)/T] | Resolution [mT/(Ω/Ω)] |
---|---|---|
20 | 0.009 | 1.20 |
30 | 0.011 | 0.46 |
50 | 0.017 | 0.40 |
90 | 0.024 | 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andò, B.; Baglio, S.; Marletta, V.; Pistorio, A. All Inkjet-Printed B Field Sensor. Proceedings 2017, 1, 621. https://doi.org/10.3390/proceedings1040621
Andò B, Baglio S, Marletta V, Pistorio A. All Inkjet-Printed B Field Sensor. Proceedings. 2017; 1(4):621. https://doi.org/10.3390/proceedings1040621
Chicago/Turabian StyleAndò, Bruno, Salvatore Baglio, Vincenzo Marletta, and Antonio Pistorio. 2017. "All Inkjet-Printed B Field Sensor" Proceedings 1, no. 4: 621. https://doi.org/10.3390/proceedings1040621
APA StyleAndò, B., Baglio, S., Marletta, V., & Pistorio, A. (2017). All Inkjet-Printed B Field Sensor. Proceedings, 1(4), 621. https://doi.org/10.3390/proceedings1040621