Effects of Nitrogen Sources on Primary and Secondary Production from Annual Temperate and Tropical Pastures in Southern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Treatments
2.3. Grazing Management
2.4. Herbage Measurements
2.5. Animal Performance
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2023. Urbanization, Agrifood Systems Transformation and Healthy Diets Across the Rural–Urban Continuum; FAOABIEC: Rome, Italy, 2023. [Google Scholar]
- Beef Report 2022. Available online: https://www.abiec.com.br/publicacoes/beef-report-2023-capitulo-01/ (accessed on 13 September 2023).
- Dimkpa, C.O.; Fugice, J.; Singh, U.; Lewis, T.D. Development of fertilizers for enhanced nitrogen use efficiency–Trends and perspectives. Sci. Total Environ. 2020, 731, 139113. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, Z.; Ouyang, Z. Nitrogen use efficiency from manure, fertilizer, and maize root to wheat uptake in a one-year 15N labeling field study. Agric. Ecosyst. Environ. 2024, 365, 108931. [Google Scholar] [CrossRef]
- IFASTAT. Consumption and Production of Fertilizer. 2022. Available online: https://www.ifastat.org/databases/plantnutrition (accessed on 13 March 2024).
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants 2017, 3, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Temkin, A.; Evans, S.; Manidis, T.; Campbell, C.; Naidenko, O.V. Exposure-based assessment and economic valuation of adverse birth outcomes and cancer risk due to nitrate in United States drinking water. Environ. Res. 2019, 176, 108. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Miralles, D.J. Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat. Eur. J. Agron. 2008, 28, 282–290. [Google Scholar] [CrossRef]
- Carciochi, W.D.; Salvagiotti, F.; Pagani, A.; Calvo, N.I.R.; Eyherabide, M.; Rozas, H.R.S.; Ciampitti, I.A. Nitrogen and sulfur interaction on nutrient use efficiencies and diagnostic tools in maize. Eur. J. Agron. 2020, 116, 126045. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Castellarín, J.M.; Miralles, D.J.; Pedrol, H.M. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Res. 2009, 113, 170–177. [Google Scholar] [CrossRef]
- Campbell, W.H. Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology. Annu. Rev. Plant Biol. 1999, 50, 277–303. [Google Scholar] [CrossRef] [PubMed]
- Swamy, U.; Wang, M.; Tripathy, J.N.; Kim, S.K.; Hirasawa, M.; Knaff, D.B.; Allen, J.P. Structure of spinach nitrite reductase: Implications for multi-electron reactions by the iron-sulfur:siroheme cofactor. Biochemistry. 2005, 44, 16054–16063. [Google Scholar] [CrossRef]
- De Souza, M.; Barcelos, J.P.D.Q.; Rosolem, C.A. Synergistic Effects of Subsoil Calcium in Conjunction with Nitrogen on the Root Growth and Yields of Maize and Soybeans in a Tropical Cropping System. Agronomy 2023, 13, 1547. [Google Scholar] [CrossRef]
- Gómez-Paccard, C.; Mariscal-Sancho, I.; León, P.; Benito, M.; González, P.; Ordóñez, R.; Espejo, R.; Hontoria, C. Ca-amendment and tillage: Medium term synergies for improving key soil properties of acid soils. Soil Tillage Res. 2013, 134, 195–206. [Google Scholar] [CrossRef]
- Galdos, M.V.; Brown, E.; Rosolem, C.A.; Pires, L.F.; Hallett, P.D.; Mooney, S.J. Brachiaria species influence nitrate transport in soil by modifying soil structure with their root system. Sci. Rep. 2020, 10, 5072. [Google Scholar] [CrossRef]
- Rosolem, C.A.; Ritz, K.; Cantarella, H.; Galdos, M.V.; Hawkesford, M.J.; Whalley, W.R.; Mooney, S.J. Enhanced plant rooting and crop system management for improved N use efficiency. Adv. Agron. 2017, 146, 205–239. [Google Scholar]
- Singh, R.; Parihar, P.; Prasad, S.M. Sulfur and calcium simultaneously regulate photosynthetic performance and nitrogen metabolism status in As-challenged Brassica juncea L. seedlings. Front. Plant Sci. 2018, 9, 374618. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, P.C.F. Harry Stobbs Memorial Lecture: Can grazing behavior support innovations in grassland management? Trop. Grassl. 2013, 1, 137–155. [Google Scholar] [CrossRef]
- Carvalho, P.C.F.; Ribeiro Filho, H.M.N.; Poli, C.H.E.C.; Moraes, A.; Delagarde, R. Importância da estrutura da pastagem na ingestão e seleção de dietas pelo animal em pastejo. In A Produção Animal na Visão dos Brasileiros, 1st ed.; Mattos, W.R.S., Ed.; Fundação de Estudos Agrários Luiz de Queiroz: Piracicaba, Brazil, 2001; Volume 1, pp. 853–871. [Google Scholar]
- United States Department of Agriculture. Soil Taxonomy; a Basic System of Soil Classification for Making and Interpreting Soil Surveys, 1st ed.; USDA: Washington, DC, USA, 1975; pp. 1–871.
- Commission of Chemistry and Soil Fertility (CQFS-RS/SC). Manual de Calagem e Adubação Para os Estados do Rio Grande do Sul e Santa Catarina; Comissão de Química e Fertilidade do Solo: Rio Grande do Sul, Brazil, 2016. [Google Scholar]
- Barthram, G.T. Experimental techniques: The HFRO sward stick. In The Hill Farming Research Organization: Biennial Report 1982–1983; Alcock, M.M., Ed.; Hill Farming Research Organization: Penicuik, UK, 1983; Volume 1, pp. 29–30. [Google Scholar]
- Mott, G.O.; Lucas, H.L. The design conduct and interpretation of grazing trials on cultivated and improved pastures. In Proceedings of the 6th International Grassland Congress, State College, PA, USA, 17–23 August 1952. [Google Scholar]
- Kunrath, T.R.; Cadenazzi, M.; Brambilla, D.M.; Anghinoni, I.; Moraes, A.; Barro, R.S. Management targets for continuously stocked mixed oat x annual Italian ryegrass pasture in a no-till integrated crop-livestock system. Eur. J. Agron. 2014, 57, 71–76. [Google Scholar] [CrossRef]
- Goyal, K.; Singh, N.; Jindal, S.; Kaur, R.; Goyal, A.; Awasthi, R. Kjeldahl method. Adv. Tech. Anal. Chem. 2022, 1, 105. [Google Scholar]
- SINDIRAÇÕES—Sindicato Nacional da Indústria de Alimentação Animal. Compêndio Brasileiro de Alimentação Animal, 5th ed.; SINDIRAÇÕES: São Paulo, Brazil, 2017. [Google Scholar]
- Dobermann, A. Nutrient use efficiency—Measurement and management. In Fertilizer Best Management Practices: General Principles, Strategy for Their Adoption and Voluntary Initiatives Versus Regulations; Krauss, A., Isherwood, K., Heffer, P., Eds.; International Fertilizer Industry Association: Paris, France, 2007; pp. 1–28. [Google Scholar]
- Oliveira, J.G.; Santana Júnior, M.L.; Jaqueline Costa Maia, N.J.C.; Dubeux Junior, J.C.B.; Gameiro, A.H.; Kunrath, T.R.; Mendonça, G.G.; Simili, F.F. Nitrogen balance and efficiency as indicators for monitoring the proper use of fertilizers in agricultural and livestock systems. Sci. Rep. 2022, 12, 12021. [Google Scholar] [CrossRef] [PubMed]
- Peoples, M.B.; Freney, J.R.; Mosier, A.R. Minimizing gaseous losses of nitrogen. In Nitrogen Fertilization in the Environment, 13th ed.; Marcel Dekker: New York, NY, USA, 1995; pp. 565–606. [Google Scholar]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K. A review of methods to improve nitrogen use efficiency in agriculture. Sustainability 2017, 10, 51. [Google Scholar] [CrossRef]
- Aspel, C.; Murphy, P.N.; McLaughlin, M.J.; Forrestal, P.J. Sulfur fertilization strategy affects grass yield, nitrogen uptake, and nitrate leaching: A field lysimeter study. J. Plant Nutr. Soil Sci. 2022, 185, 209–220. [Google Scholar] [CrossRef]
- Silveira, M.L.; Kohmann, M.M. Chapter 3—Maintaining soil fertility and health for sustainable pastures. In Management Strategies for Sustainable Cattle Production in Southern Pastures; Rouquette, M., Aiken, G.E., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 35–58. [Google Scholar]
- Jones, D.L.; Ryan, P.R. Aluminum Toxicity. In Encyclopedia of Applied Plant Sciences; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Hanson, J.B. The function of calcium in plant nutrition. In Advances in Plant Nutrition; Tinker, P.B., Lauchli, A., Eds.; Praeger: New York, NY, USA, 1984; pp. 149–208. [Google Scholar]
- Aguilera, P.; Borie, F.; Seguel, A.; Cornejo, P. Fluorescence detection of aluminum in arbuscular mycorrhizal fungal structures and glomalin using confocal laser scanning microscopy. Soil Biol. Biochem. 2011, 43, 2427–2431. [Google Scholar] [CrossRef]
- Cumming, J.R.; Ning, J. Arbuscular mycorrhizal fungi enhance aluminium resistance of broomsedge (Andropogon virginicus L.). J. Exp. Bot. 2023, 54, 1447–1459. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Juhasz, A.; Islam, S.; Diepeveen, D.; Zhang, J.; Wang, P.; Ma, W. Impact of mid-season sulphur deficiency on wheat nitrogen metabolism and biosynthesis of grain protein. Sci. Rep. 2018, 8, 2499. [Google Scholar] [CrossRef] [PubMed]
- Makino, A. Rubisco and nitrogen relationships in rice: Leaf photosynthesis and plant growth. Soil Sci. Plant Nutr. 2003, 49, 319–327. [Google Scholar] [CrossRef]
- Chan, K.X.; Phua, S.Y.; Van-Breusegem, F. Secondary sulfur metabolism in cellular signalling and oxidative stress responses. J. Exp. Bot. 2019, 70, 4237–4250. [Google Scholar] [CrossRef] [PubMed]
- Aulakh, M.S. Crop responses to sulphur nutrition. In Sulphur in Plants, 1st ed.; Abrol, Y.P., Ahmad, A., Eds.; Springer: Dordrecht, The Netherlands, 2003; Volume 1, pp. 341–358. [Google Scholar]
- Ahmad, A.; Abdin, M.Z. Photosynthesis and its related physiological variables in the leaves of Brassica genotypes as influenced by sulphur fertilization. Physiol. Plants 2000, 110, 144–149. [Google Scholar] [CrossRef]
- Skorupka, M.; Nosalewicz, A. Ammonia volatilization from fertilizer urea—A new challenge for agriculture and industry in view of growing global demand for food and energy crops. Agriculture 2021, 11, 822. [Google Scholar] [CrossRef]
- EEA. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2013—Technical Guidance to Prepare National Emission Inventories. In EEA Technical Report No 12/2013; European Environment Agency: Luxembourg, 2013. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/4-agriculture/3-d-crop-production-and/view (accessed on 16 February 2024).
- Guthrie, S.; Giles, S.; Dunkerley, F.; Tabaqchali, F.; Harshfield, A.; Ioppolo, B.; Manville, C. The Impact of Ammonia Emissions from Agriculture on Biodiversity. An Evidence Synthesis; RAND Corporation: Santa Monica, CA, USA; Cambridge, UK, 2018; Available online: https://royalsociety.org/-/media/policy/projects/evidence-synthesis/Ammonia/Ammonia-report.pdf (accessed on 2 March 2023).
- Ti, C.; Xia, L.; Chang, S.X.; Yan, X. Potential for mitigating global agricultural ammonia emission: A meta-analysis. Environ. Pollut. 2019, 245, 141–148. [Google Scholar] [CrossRef]
- Woodley, A.L.; Drury, C.F.; Yang, X.Y.; Phillips, L.A.; Reynolds, D.W.; Calder, W.; Oloya, T.O. Ammonia volatilization, nitrous oxide emissions, and corn yields as influenced by nitrogen placement and enhanced efficiency fertilizers. Soil Sci. Soc. Am. J. 2020, 84, 1327–1341. [Google Scholar] [CrossRef]
- Mencaroni, M.; Dal Ferro, N.; Furlanetto, J.; Longo, M.; Lazzaro, B.; Sartori, L.; Grant, B.B.; Smith, W.N.; Morari, F. Identifying N fertilizer management strategies to reduce ammonia volatilization: Towards a site-specific approach. J. Environ. Manag. 2021, 277, 111445. [Google Scholar] [CrossRef] [PubMed]
- Rakesh, K.; Umesha, C.; Balachandra, Y. Influence of nitrogen and zinc levels on pearl pearl millet (Pennisetum glaucum L.). Biol. Forum Int. J. 2021, 13, 128–132. [Google Scholar]
- Kunrath, T.R.; Lemaire, G.; Teixeira, E.; Brown, H.E.; Ciampitti, I.A.; Sadras, V.O. Allometric relationships between nitrogen uptake and transpiration to untangle interactions between nitrogen supply and drought in maize and sorghum. Eur. J. Agron. 2020, 120, 126145. [Google Scholar] [CrossRef]
- Kunrath, T.R.; Lemaire, G.; Sadras, V.O.; Gastal, F. Water use efficiency in perennial forage species: Interactions between nitrogen nutrition and water deficit. Field Crops Res. 2018, 222, 1–11. [Google Scholar] [CrossRef]
- Lemaire, G.; Jeuffroy, M.H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. Eur. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Lemaire, G.; Salette, J. Relationship between growth and nitrogen uptake in a pure grass stand: I. Environmental effects. Agronomy 1984, 4, 423–430. [Google Scholar] [CrossRef]
- Lemaire, G.; Salette, J. Relationship between growth and nitrogen uptake in a pure grass stand: II. Study on genotype variation. Agronomy 1984, 4, 431–436. [Google Scholar]
- Ungar, E.; Ravid, N. Bite horizons and dimensions for cattle grazing herbage to high levels of depletion. Grass Forage Sci. 1999, 54, 357–364. [Google Scholar] [CrossRef]
- Baumont, R.; Cohen-Salmon, D.; Prache, S.; Sauvant, D. A mechanistic model of intake and grazing behaviour in sheep integrating sward architecture and animal decisions. Anim. Feed Sci. Technol. 2004, 112, 5–28. [Google Scholar] [CrossRef]
- Benvenutti, M.A.; Gordon, I.J.; Poppi, D.P. The effect of the density and physical properties of grass stems on the foraging behaviour and instantaneous intake rate by cattle grazing an artificial reproductive tropical sward. Grass Forage Sci. 2006, 61, 272–281. [Google Scholar] [CrossRef]
- Drescher, M.; Heitkönig, I.M.; Raats, J.G.; Prins, H.H. The role of grass stems as structural foraging deterrents and their effects on the foraging behaviour of cattle. Appl. Anim. Behav. Sci. 2006, 101, 10–26. [Google Scholar] [CrossRef]
- Da Silva, S.C.; Sbrissia, A.F.; Pereira, L.E.T. Ecophysiology of C4 forage grasses—Understanding plant growth for optimising their use and management. Agriculture 2015, 5, 598–625. [Google Scholar] [CrossRef]
- Cardoso, A.D.S.; Barbero, R.P.; Romanzini, E.P.; Teobaldo, R.W.; Ongaratto, F.; Fernandes, M.H.M.D.R.; Ruggieri, A.C.; Reis, R.A. Intensification: A key strategy to achieve great animal and environmental beef cattle production sustainability in Brachiaria grasslands. Sustainability 2020, 12, 6656. [Google Scholar] [CrossRef]
- Sun, H.; Yu, J.; Zhang, F.; Kang, J.; Li, M.; Wang, Z.; Liu, W.; Zhang, J.; Yang, Q.; Long, R. iTRAQ-based comparative proteomic analysis of differences in the protein profiles of stems and leaves from two alfalfa genotypes. BMC Plant Biol. 2020, 20, 1–14. [Google Scholar] [CrossRef]
- Huson, K.M.; Meehan, E.J.; Allen, M.; Grant, N.W.; Patterson, J.D. Comparison of the effects of calcium ammonium nitrate and stabilized urea fertilizers on grass and silage yields and quality. Grass Forage Sci. 2023, 78, 547–562. [Google Scholar] [CrossRef]
- Simões, V.J.L.P.; de Souza, E.S.; Martins, A.P.; Tiecher, T.; Bremm, C.; da Silva Ramos, J.; Farias, G.D.; de Faccio Carvalho, P.C. Structural soil quality and system fertilization efficiency in integrated crop-livestock system. Agric. Ecosyst. Environ. 2023, 349, 108453. [Google Scholar] [CrossRef]
- Galindo, F.S.; Buzetti, S.; Teixeira Filho, M.C.M.; Dupas, E.; Carvalho, F.C. Nitrogen management in mombasa guineagrass as a function of sources and rates of nitrogen. Rev. Cienc. Agrar. 2018, 41, 900–913. [Google Scholar]
- Costa, C.M.; da Costa, A.B.G.; Theodoro, G.D.F.; Difante, G.D.S.; Gurgel, A.L.C.; Santana, J.C.S.; Camargo, F.C.; de Almeida, E.M. The 4R management for nitrogen fertilization in tropical forage: A review. Aust. J. Crop Sci. 2020, 14, 1834–1837. [Google Scholar] [CrossRef]
- Euclides, V.P.B.; Macedo, M.C.M.; Zimmer, A.H.; Medeiros, R.N.D.; Oliveira, M.P.D. Características do pasto de capim-tanzânia adubado com nitrogênio no final do verão. Pesquisa Agropecuária Brasileira 2007, 42, 1189–1198. [Google Scholar] [CrossRef]
Organic Carbon | pH in Water | Al | Ca | Mg | Base Saturation | Aluminum Saturation | S |
---|---|---|---|---|---|---|---|
g/kg | (1:1, v/v) | cmol/dm3 | % | mg/dm3 | |||
9.3 | 4.7 | 0.5 | 1.4 | 0.7 | 30 | 17.3 | 5 |
Year | Species | Control Weeds | Seeding | Application of Fertilizers | Level kg of N ha−1 | Stocking Season |
---|---|---|---|---|---|---|
1 | Italian ryegrass | 25 May 2021 | 25 June 2021 | 2 August 2021 | 60 | 3 September 2021 to 11 November 2021 |
2 | Italian ryegrass | 29 April 2022 | 27 April 2022 | 26 May 2022 | 60 | 9 June 2022 to 4 October 2022 |
1 | Pearl millet | 3 December 2021 | 6 December 2021 | 24 February 2022 | 100 | 27 January 2022 to 24 April 2022 |
2 | Pearl millet | 26 October 2022 | 1 November 2022 and 25 November 2022 | 8 February 2023 | 100 | 9 January 2023 to 30 March 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, M.A.; Simões, V.J.L.P.; Silveira, D.C.; Savian, J.V.; Kunrath, T.R.; Duarte, L.P.; Coser, T.R.; Junklewitz, P.; de Faccio Carvalho, P.C. Effects of Nitrogen Sources on Primary and Secondary Production from Annual Temperate and Tropical Pastures in Southern Brazil. Nitrogen 2024, 5, 483-497. https://doi.org/10.3390/nitrogen5020031
da Silva MA, Simões VJLP, Silveira DC, Savian JV, Kunrath TR, Duarte LP, Coser TR, Junklewitz P, de Faccio Carvalho PC. Effects of Nitrogen Sources on Primary and Secondary Production from Annual Temperate and Tropical Pastures in Southern Brazil. Nitrogen. 2024; 5(2):483-497. https://doi.org/10.3390/nitrogen5020031
Chicago/Turabian Styleda Silva, Marcelo Ascoli, Vicente José Laamon Pinto Simões, Diógenes Cecchin Silveira, Jean Victor Savian, Taíse Robinson Kunrath, Lóren Pacheco Duarte, Thais Rodrigues Coser, Petra Junklewitz, and Paulo César de Faccio Carvalho. 2024. "Effects of Nitrogen Sources on Primary and Secondary Production from Annual Temperate and Tropical Pastures in Southern Brazil" Nitrogen 5, no. 2: 483-497. https://doi.org/10.3390/nitrogen5020031
APA Styleda Silva, M. A., Simões, V. J. L. P., Silveira, D. C., Savian, J. V., Kunrath, T. R., Duarte, L. P., Coser, T. R., Junklewitz, P., & de Faccio Carvalho, P. C. (2024). Effects of Nitrogen Sources on Primary and Secondary Production from Annual Temperate and Tropical Pastures in Southern Brazil. Nitrogen, 5(2), 483-497. https://doi.org/10.3390/nitrogen5020031