Optimizing N Fertilization for Increasing Yield and Profits of Rainfed Maize Grown under Sandy Loam Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Setup
2.2. Crop Management
2.3. Soil, Plant and Grain Analysis
2.4. Agro-Morphological Traits Recording
2.5. Nitrogen Uptake and Use Efficiency
2.6. Partial Economic Analysis
2.7. Data Analysis
3. Results
3.1. Agronomic and Yield Attributing Traits
3.2. Plant Lodging and Sterility
3.3. Leaf Senescence
3.4. Grain Yield
3.5. Nitrogen Uptake and Use Efficiency
3.6. Partial Economic Analysis
4. Discussion
4.1. Effect of Nitrogen in Agronomic and Yield Attributing Traits
4.2. Plant Lodging and Sterility
4.3. Leaf Senescence
4.4. Grain Yield
4.5. Nitrogen Uptake and Use Efficiency
4.6. Economic Return
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Area, Production and Productivity of Maize in World and South Asian Countries. 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 10 April 2021).
- AITC. Agriculture and Livestock Diary (Nepali); Government of Nepal, Ministry of Agriculture and Livestock Development, Agriculture Information and Training Center: Lalitpur, Nepal, 2020. Available online: https://aitc.gov.np/english/downloadsdetail/2/2019/19794382/ (accessed on 10 April 2021).
- Koirala, K.B.; Gurung, D.; Rijal, T.; Bhandari, G.; Sah, Y.; Shrestha, J.; Chhetri, J. Hybrid Maize Research and Development in Nepal. In Proceedings of the 27th National Summer Crops Workshop, Rampur, Chitawan, Nepal, 18–20 April 2013; Volume 2, pp. 133–154. [Google Scholar]
- Tripathi, M.P.; Koirala, K.B.; Gautam, D.; Subedi, S.; Upadhyay, J.; Shrestha, H.K. Field Performance of Three-way Cross Yellow and White Maize Hybrids in Nepal. Asian J. Adv. Agric. Res. 2021, 15, 24–33. [Google Scholar] [CrossRef]
- Osti, N.P. Animal Feed Resources and their Management in Nepal. Acta Sci. Agric. 2020, 4, 2–14. [Google Scholar] [CrossRef]
- TEPC. Export Import Data Bank; Trade and Export Promotion Center, Ministry of Industry, Commerce and Supplies, Government of Nepal: Lalitpur, Nepal, 2019. Available online: https://www.tepc.gov.np/ (accessed on 10 April 2021).
- Paudyal, K.R.; Ransom, J.K.; Rajbhandari, N.P.; Adhikari, K.; Gerpacio, R.V.; Pingali, P.L. Maize in Nepal: Production Systems, Constraints, and Priorities for Research; NARC and CIMMYT: Kathmandu, Nepal, 2001. [Google Scholar]
- Govind, K.C.; Karki, T.B.; Shrestha, J.; Achhami, B.B. Status and prospects of maize research in Nepal. J. Maize Res. Dev. 2015, 1, 1–9. [Google Scholar] [CrossRef]
- Devkota, K.P.; McDonald, A.J.; Khadka, L.; Khadka, A.; Paudel, G.; Devkota, M. Fertilizers, hybrids, and the sustainable intensification of maize systems in the rainfed mid-hills of Nepal. Eur. J. Agron. 2016, 80, 154–167. [Google Scholar] [CrossRef]
- Noor, M.A.; Tejada Moral, M. Nitrogen management and regulation for optimum NUE in maize—A mini review. Cogent Food Agric. 2017, 3, 1348214. [Google Scholar] [CrossRef]
- Blumenthal, J.D.M.; Baltensperger, D.D.; Cassman, K.G.; Mason, S.C.; Pavlista, A.D. Importance and Effect of Nitrogen on Crop Quality and Health. In Nitrogen in the Environment; Academic Press: Cambridge, MA, USA, 2008; pp. 51–70. [Google Scholar] [CrossRef] [Green Version]
- Wiederholt, R.; Johnson, B. Nitrogen Behavior in the Environment. North Dakota State University, Extension Service. 2005. Available online: https://www.ag.ndsu.edu/publications/environment-natural-resources/nitrogen-behavior-in-the-environment (accessed on 10 May 2021).
- English, E.; Ketterings, Q.; Czymmek, K.; Gabriel, A.; Flis, F.; Lawrence, J. Nitrogen Uptake by Corn. Agronomy Fact Sheet Series. 2017. Available online: https://extension.psu.edu/nitrogen-fertilization-of-corn (accessed on 15 July 2021).
- Pearson, C.J.; Jacobs, B.C. Yield components and nitrogen partitioning of maize in response to nitrogen before and after anthesis. Aust. J. Agric. Res. 1987, 38, 1001–1009. [Google Scholar] [CrossRef]
- Andrade, F.H.; Echarte, L.; Rizzalli, R.; Della Maggiora, A.; Casanovas, M. Kernel number prediction in maize under nitrogen or water stress. Crop. Sci. 2002, 42, 1173–1179. [Google Scholar] [CrossRef] [Green Version]
- Aziiba, E.A.; Qiang, C.; Coulter, J.A. Mechanisms of nitrogen use in maize. Agronomy 2019, 9, 775. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, J. Nutrient Deficiencies and Application Injuries in Field Crops; University Extension; IOWA State University: Ames, IA, USA, 2004; Available online: https://crops.extension.iastate.edu/files/article/nutrientdeficiency.pdf (accessed on 14 May 2021).
- Sattelmacher, B.; Horst, W.J.; Becker, H.C. Factors that contribute to genetic variation for nutrient efficiency of crop plants. Z. Pflanz. Bodenkd. 1994, 157, 215–224. [Google Scholar] [CrossRef]
- Nielsen, B.; Colville, D. Stalk Lodging in Corn: Guidelines for Preventive Management. Agronomy Guide: Purdue University Cooperative Extension Service. Available online: https://www.extension.purdue.edu/extmedia/AY/AY-262.html (accessed on 14 May 2021).
- FAO. World Fertilizer Outlook and Trends to 2022. 2019. Available online: http://www.fao.org/publications/card/en/c/CA6746EN/ (accessed on 14 May 2021).
- MoALD. Statistical Information on Nepalese Agriculture 2075/76 (2018/19); Government of Nepal, Ministry of Agriculture & Livestock Development, Planning & Development, Cooperation, Coordination Division, Statistics and Analysis Section, Singha Durbar: Kathmandu, Nepal, 2020. Available online: http://doanepal.gov.np/downloadfile/Statistical%20information%20on%20Nepalese%20agriculture_1601976502.pdf (accessed on 11 April 2021).
- Dhakal, K.; Baral, B.R.; Pokhrel, K.R.; Pandit, N.R.; Thapa, S.B.; Gaihre, Y.K.; Vista, S.P. Deep placement of briquette urea increases agronomic and economic efficiency of maize in sandy loam soil. Agrivita 2020, 42, 499–508. [Google Scholar] [CrossRef]
- Conijn, J.G.; Bindraban, P.S.; Schröder, J.J.; Jongschaap, R.E.E. Can our global food system meet food demand within planetary boundaries? Agric. Ecosyst. Environ. 2018, 251, 244–256. [Google Scholar] [CrossRef]
- Fugice, J.; Dimkpa, C.; Johnson, L. Slow and Steady: The Effects of Different Coatings on Nitrogen Release in Soil; International Fertilizer Development Corporation (IFDC): Muscle Shoals, AL, USA, 2018; Available online: https://ifdc.org/wp-content/uploads/2018/10/Fertilizer-Focus-Slow-and-Steady-Sept-Oct-2018.pdf (accessed on 3 May 2021).
- Bhattacharya, A. Nitrogen-Use Efficiency under Changing Climatic Conditions. Chang. Clim. Resour. Use Effic. Plants 2019, 181–240. [Google Scholar] [CrossRef]
- Beatty, P.H.; Wong, J.L. Nitrogen Use Efficiency. In Encyclopedia of Applied Plant Sciences, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 1. [Google Scholar] [CrossRef]
- Lungu, O.I.; Dynoodt, R.F. Acidification from Long-Term Use of Urea and Its Effect on Selected Soil Properties. Afr. J. Food Agric. Nutr. Dev. 2008, 8, 63–76. [Google Scholar] [CrossRef] [Green Version]
- ABPSD. Statistical Information on Nepalese Agriculture 2014/15; Agri-Business Promotion and Statistical Division, Ministry for Agriculture and Cooperatives, Singhadarbar: Kathmandu, Nepal, 2014; Available online: https://nepalindata.com/resource/statistical-information-nepalese-agriculture-201415-2071072/ (accessed on 13 May 2021).
- Adhikari, P.; Baral, B.R.; Shrestha, J. Maize response to time of nitrogen application and planting seasons. J. Maize Res. Dev. 2016, 2, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, S.P.; Timsina, K.P.; Brown, P.R.; Ghimire, Y.N.; Lamichhane, J. Technical efficiency of hybrid maize production in eastern terai of Nepal: A stochastic frontier approach. J. Agric. Nat. Resour. 2018, 1, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.; Bhatta, N.P.; Paudel, P.; Pariyar, R.; Maskey, K.H.; Khadka, J.; Thapa, T.B.; Rijal, B.; Panday, D. Improving fertilizer recommendations for Nepalese farmers with the help of soil-testing mobile van. J. Crop. Improv. 2018, 32, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, F.G.; Kaiser, D.E. Understanding Nitrogen in Soils; University of Minnesota Extension: St Paul, MN, USA, 2018; Available online: http://extension.umn.edu/nitrogen/understanding-nitrogen-soils (accessed on 15 August 2021).
- Dhakal, K.; Ghimire, S.K.; Kharel, R.; Yadaw, R.B.; Pokhrel, K.R.; Prem, B.M. Green super rice genotypes exhibited superior morphological traits and higher yield advantage over check under rainfed lowland condition. Russ. J. Agric. Sociol. Econ. Sci. 2020, 101, 3–12. [Google Scholar] [CrossRef]
- Karki, R.; Talchabhadel, R.; Aalto, J.; Baidya, S.K. New climatic classification of Nepal. Theor. Appl. Climatol. 2016, 125, 799–808. [Google Scholar] [CrossRef]
- SQCC. Notified and Denotified Varieties of Different Crops Till 13 September 2019; Government of Nepal, Ministry of Agriculture and Livestock Development, Seed Quality Control Centre, Hariharbhawan: Lalitpur, Nepal, 2019. Available online: http://sqcc.gov.np/images/category/Notified_and_Denotified_Varieties_till_2076_04_07.pdf (accessed on 15 April 2021).
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils1. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Walkley, A.J.; Black, I.A. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-Total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy; Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture Circular 19; United States Department of Agriculture: Washington, DC, USA, 1954; p. 939. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1967. [Google Scholar]
- Andersen, P. A review of micronutrient problems in the cultivated soil of Nepal: An issue with implications for agriculture and human health. Mt. Res. Dev. 2007, 27, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Panday, D.; Ojha, R.B.; Chalise, D.; Das, S.; Twanabasu, B. Spatial variability of soil properties under different land use in the Dang district of Nepal. Cogent Food Agric. 2019, 5, 1600460. [Google Scholar] [CrossRef]
- Shrestha, S.; Becker, M.; Lamers, J.P.A.; Wimmer, M.A. Diagnosis of zinc and boron availability in emerging vegetable-based crop rotations in Nepal. J. Plant Nutr. Soil Sci. 2020, 183, 429–438. [Google Scholar] [CrossRef]
- Baral, B.R.; Pande, K.R.; Gaihre, Y.K.; Baral, K.R.; Sah, S.K.; Thapa, Y.B.; Singh, U. Increasing nitrogen use efficiency in rice through fertilizer application method under rainfed drought conditions in Nepal. Nutr. Cycl. Agroecosyst. 2020, 118, 103–114. [Google Scholar] [CrossRef]
- Zaman-Allah, M.; Das, B.; Cairns, J.E.; Vinayan, M.T.; Tarekegne, A.; Magorokosho, C.; Zaidi, P.H.; Seetharam, K. Phenotyping for Abiotic Stress Tolerance in Maize—Low Nitrogen Stress. A Field Manual; CIMMYT: Harare, Zimbabwe, 2018; Available online: https://repository.cimmyt.org/bitstream/handle/10883/19935/60069.pdf?sequence=1 (accessed on 10 March 2021).
- Ladha, J.K.; Kirk GJ, D.; Bennett, J.; Peng, S.; Reddy, C.K.; Reddy, P.M.; Singh, U. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. Field Crop. Res. 1998, 56, 41–71. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Fakorede, M.A.B.; Menkir, A.; Sanogo, D. Conduct and Management of Maize Field Trials; International Institute of Tropical Agriculture: Ibadan, Nigeria, 2012; p. 59. Available online: https://repository.cimmyt.org/bitstream/handle/10883/1376/97758.pdf?sequence=1&isAllowed=y (accessed on 12 March 2021).
- Amare, D.; Endalew, W.; Yayu, N.; Endeblihatu, A.; Biweta, W.; Tefera, A.; Tekeste, S. Evaluation and Demonstration of Maize Shellers for Small-Scale Farmers. MOJ Appl. Bionics Biomech. 2017, 1, 93–98. [Google Scholar] [CrossRef]
- Pacheco, A.; Rodriguez, F.; Alvarado, G.; Crossa, J.; Burgueno, J. ADEL-R (Analysis and Design of Experiments with R for Windows), Version 2.0; International Maize and Wheat Improvement Center: Veracruz, Mexico, 2017; Available online: https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10857 (accessed on 16 February 2021).
- Sharma, R.; Adhikari, P.; Shrestha, J.; Acharya, B.P. Response of maize (Zea mays L.) hybrids to different levels of nitrogen. Arch. Agric. Environ. Sci. 2019, 4, 295–299. [Google Scholar] [CrossRef]
- Ngosong, C.; Bongkisheri, V.; Tanyi, C.B.; Nanganoa, L.T.; Tening, A.S. Optimizing Nitrogen Fertilization Regimes for Sustainable Maize (Zea mays L.) Production on the Volcanic Soils of Buea Cameroon. Adv. Agric. Cult. 2019, 2019, 4681825. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.Y.; Li, Y.H.; Zhang, J.W.; Liu, P.; Zhao, B.; Dong, S.T. Effects of plant density and nitrogen dose on lodging-related stalk traits of summer maize. Plant Soil Environ. 2016, 62, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Wang, K.J.; Jiang, G.M.; Biswas, D.K.; Xu, H.; Li, L.F.; Li, Y.H. Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Ann. Bot. 2005, 96, 925–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheetham, H.; Millner, J.; Hardacre, A.K. Effect of nitrogen fertilisation on maize grain quality and yield. Agron. N. Z. 2006, 36, 71–84. [Google Scholar]
- Adhikary, B.H.; Baral, B.R.; Shrestha, J. Productivity of winter maize as affected by varieties and fertilizer levels. Int. J. Appl. Biol. 2020, 4, 85–93. [Google Scholar] [CrossRef]
- Abebe, Z.; Feyisa, H. Effects of Nitrogen Doses and Time of Application on Yield of Maize: Rainfall Variability Influenced Time of N Application. Int. J. Agron. 2017, 2017, 1545280. [Google Scholar] [CrossRef] [Green Version]
- Makhziah, M.; Rochiman, K.; Purnobasuki, H. Effect of Nitrogen Supply and Genotypic Variation for Nitrogen Use Efficiency in Maize. Am. J. Exp. Agric. 2013, 3, 182–199. [Google Scholar] [CrossRef]
- Peng, D.; Chen, X.; Yin, Y.; Lu, K.; Yang, W.; Tang, Y.; Wang, Z. Lodging resistance of winter wheat (Triticum aestivum L.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crop. Res. 2014, 157, 1–7. [Google Scholar] [CrossRef]
- Mistele, B.; Schmidhalter, U. Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. Eur. J. Agron. 2008, 29, 184–190. [Google Scholar] [CrossRef]
- Paponov, I.A.; Engels, C. Effect of nitrogen supply on leaf traits related to photosynthesis during grain filling in two maize genotypes with different N efficiency. J. Plant Nutr. Soil Sci. 2003, 166, 756–763. [Google Scholar] [CrossRef]
- Spano, G.; Di Fonzo, N.; Perrotta, C.; Platani, C.; Ronga, G.; Lawlor, D.W.; Napier, J.A.; Shewry, P.R. Physiological characterization of “stay green” mutants in durum wheat. J. Exp. Bot. 2003, 54, 1415–1420. [Google Scholar] [CrossRef] [Green Version]
- Glass, A.D.M. Nitrogen Use Efficiency of Crop Plants: Physiological Constraints upon Nitrogen Absorption. Crit. Rev. Plant Sci. 2003, 22, 453–470. [Google Scholar] [CrossRef]
- Girardin, P.; Deltour, A.; Tollenaar, M. Effect of Temporary N Starvation in Maize on Leaf Senescence. Can. J. Plant Sci. 1985, 65, 819–829. [Google Scholar] [CrossRef]
- Gungula, D.T.; Togun, A.O.; Kling, J.G. The Influence of N Doses on Maize Leaf Number and Senescence in Nigeria. Int. Inst. Trop. Agric. 2005, 1, 1–5. [Google Scholar]
- Galindo, F.S.; Teixeira Filho, M.C.M.; Buzetti, S.; Pagliari, P.H.; Santini, J.M.K.; Alves, C.J.; Megda, M.M.; Nogueira, T.A.R.; Andreotti, M.; Arf, O. Maize yield response to nitrogen doses and sources associated with Azospirillum brasilense. Agron. J. 2019, 111, 1985–1997. [Google Scholar] [CrossRef] [Green Version]
- Begizew, G.; Adugnaw, M.; Merkeb, G. Effect of nitrogen dose and intra-row spacing on yield and yield components of maize at Bako, Western Ethiopia. Afr. J. Agric. Res. 2020, 16, 1464–1471. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, A.A.; Kamran, M.; Ahmad, I.; Ali, S.; Fahad, S. Response of Maize Cultivars to Various Nitrogen Levels. Eur. J. Exp. Biol. 2018, 8, 1–4. [Google Scholar] [CrossRef]
- Liu, D.; Cui, Z.; Yan, B.; Gao, Y.; Wu, B.; Li, W.; Niu, J. Effect of nitrogen and phosphorus application on soil nitrogen morphological characteristics and grain yield of oil flax. Oil Crop Sci. 2020, 5, 29–35. [Google Scholar] [CrossRef]
- Bai, Z.; Li, H.; Yang, X.; Zhou, B.; Shi, X.; Wang, B.; Li, D.; Shen, J.; Chen, Q.; Qin, W.; et al. The critical soil P levels for crop yield, soil Fertil. and environmental safety in different soil types. Plant Soil 2013, 372, 27–39. [Google Scholar] [CrossRef]
- van Biljon, J.J.; Fouche, D.S.; Botha, A.D.P. Threshold values and sufficiency levels for potassium in maize producing sandy soils of South Africa. S. Afr. J. Plant Soil 2008, 25, 65–70. [Google Scholar] [CrossRef]
- Sangakkara, R.; Amarasekera, P.; Stamp, P. Growth, yields, and nitrogen-use efficiency of maize (Zea mays L.) and mungbean (Vigna radiata L. Wilczek) as affected by potassium fertilizer in tropical South Asia. Commun. Soil Sci. Plant Anal. 2011, 42, 832–843. [Google Scholar] [CrossRef]
- Sahrawat, K.L.; Rego, T.J.; Wani, S.P.; Pardhasaradhi, G. Sulfur, boron, and zinc fertilization effects on grain and straw quality of maize and sorghum grown in semi-arid tropical region of India. J. Plant Nutr. 2008, 31, 1578–1584. [Google Scholar] [CrossRef] [Green Version]
- Ruffo, M.; Olson, R.; Daverede, I. Maize yield response to zinc sources and effectiveness of diagnostic indicators. Commun. Soil Sci. Plant Anal. 2016, 47, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Kugbe, J.X.; Kombat, R.; Atakora, W. Secondary and micronutrient inclusion in fertilizer formulation impact on maize growth and yield across northern Ghana. Cogent Food Agric. 2019, 5, 1700030. [Google Scholar] [CrossRef]
- Nduwimana, D. Optimizing Nitrogen Use Efficiency and Maize Yield under Varying Fertilizer Doses in Kenya. Int. J. Bioresour. Sci. 2020, 7, 63–73. [Google Scholar] [CrossRef]
- Barbieri, P.A.; Echeverría, H.E.; Saínz Rozas, H.R.; Andrade, F.H. Nitrogen use efficiency in maize as affected by nitrogen availability and row spacing. Agron. J. 2008, 100, 1094–1100. [Google Scholar] [CrossRef]
- Victoria, O.; Ping, A.; Yang, S.; Eneji, E. Liming and Nitrogen Effects on Maize Yield and Nitrogen Use Efficiency. Commun. Soil Sci. Plant Anal. 2019, 50, 2041–2055. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S.; Martin, D.L.; Ferguson, R.B.; Bernards, M.L. Plant nutrient uptake and soil nutrient dynamics under full and limited irrigation and rainfed maize production. Agron. J. 2013, 105, 527–538. [Google Scholar] [CrossRef]
- Qiu, S.J.; He, P.; Zhao, S.C.; Li, W.J.; Xie, J.G.; Hou, Y.P.; Grant, C.A.; Zhou, W.; Jin, J.Y. Impact of nitrogen dose on maize yield and nitrogen use efficiencies in northeast China. Agron. J. 2015, 107, 305–313. [Google Scholar] [CrossRef]
- Broadbent, F.E.; De Datta, S.K.; Laureles, E.V. Measurement of Nitrogen Utilization Efficiency in Rice Genotypes. Agron. J. 1987, 79, 786–791. [Google Scholar] [CrossRef]
- Kankam-Boadu, I.; Sarkodie-Addo, J.; Amagloh, F. Nitrogen Use Efficiency and Maize Productivity in the Guinea Savanna Agro-ecological Zone of Ghana. J. Exp. Agric. Int. 2018, 23, 1–15. [Google Scholar] [CrossRef]
- Campelo, D.H.; Teixeira A dos, S.; Moreira LC, J.; de Lacerda, C.F. Growth, production and water and nitrogen use efficiency of maize under water depths and nitrogen fertilization. Rev. Bras. Eng. Agric. Ambient. 2019, 23, 747–753. [Google Scholar] [CrossRef]
- Sharifi, R.S.; Namvar, A. Effects of time and dose of nitrogen application on phenology and some agronomical traits of maize (Zea mays L.). Biologija 2016, 62, 35–45. [Google Scholar] [CrossRef]
- Paudel, P.; Matsuoka, A. Cost efficiency estimates of maize production in Nepal: A case study of the Chitwan district. Agric. Econ. 2009, 55, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Dahal, B.R.; Rijal, S. Resource Use Efficiency and Profitability of Maize Farming in Sindhuli, Nepal: Cobb-Douglas Production Function Analysis. Int. J. Appl. Sci. Biotechnol. 2019, 7, 248–256. [Google Scholar] [CrossRef] [Green Version]
- Beshir, A.; Pradhan, B.; Choudhary, D.; Rusinamhodzi, L. Slow-Release Nitrogen Fertilizers Measure Up: Briquetted Urea and Polymer-Coated Urea More Efficient as Maize Fertilizers than Regular Urea, Researchers in Nepal Find. 3 June 2019. Available online: https://www.cimmyt.org/news/slow-release-nitrogen-fertilizers-measure-up/ (accessed on 17 August 2021).
- Sherchan, D.; Karki, K. Plant Nutrient Management for Improving Crop Productivity in Nepal; FAO: Roma, Italy, 2005; Available online: http://www.fao.org/3/ag120e/ag120e10.htm (accessed on 17 August 2021).
- Kunwar, U. Balanced Fertilizer Application Boosts Smallholder Incomes. Precision Nutrient Management Helps Women Farmers in Nepal Increase Crop Yields and Household Incomes. 13 November 2020. Available online: https://www.cimmyt.org/blogs/balanced-fertilizer-application-boosts-smallholder-incomes/ (accessed on 17 August 2021).
- Kishore, A.; Alvi, M.; Krupnik, T.J. Development of balanced nutrient management innovations in South Asia: Perspectives from Bangladesh, India, Nepal, and Sri Lanka. Glob. Food Secur. 2021, 28, 100464. [Google Scholar] [CrossRef] [PubMed]
Treatments | Abbreviation | Details |
---|---|---|
T1 | CK | Control (no fertilizer) |
T2 | N0 | 0:60:40 NPK kg ha−1 + 20 kg ha−1 other nutrients mix |
T3 | N60 | 60:60:40 NPK kg ha−1 + 20 kg ha−1 other nutrients mix |
T4 | N120 | 120:60:40 NPK kg ha−1 + 20 kg ha−1 other nutrients mix |
T5 | N180 | 180:60:40 NPK kg ha−1 + 20 kg ha−1 other nutrients mix |
T6 | N240 | 240:60:40 NPK kg ha−1 + 20 kg ha−1 other nutrients mix |
Treatments | PHT (cm) | EHT (cm) | EHARV | STOY (t ha−1) | BY (t ha−1) | HGW (g) | HI |
---|---|---|---|---|---|---|---|
CK | 187 a | 89 a | 36 | 4.1 a | 5.9 a | 35.8 a | 0.32 a |
N0 | 187 a | 84 a | 39 | 4.4 a | 6.7 a | 34.3 ab | 0.35 a |
N60 | 212 a | 109 b | 41 | 4.9 a | 8.9 b | 36.7 abc | 0.46 b |
N120 | 224 ab | 116 b | 41 | 7.2 b | 12.7 c | 39.6 bcd | 0.44 b |
N180 | 218 bc | 114 b | 40 | 8.2 b | 13.9 c | 41.1 cd | 0.41 b |
N240 | 223 c | 115 b | 43 | 7.9 b | 13.7 c | 41.4 d | 0.42 b |
Grand Mean | 209 | 105 | 40 | 6.1 | 10.3 | 38.2 | 0.40 |
p-value | 0.02 * | <0.01 ** | 0.08 ns | <0.01 ** | <0.01 ** | 0.02 * | <0.01 ** |
LSD (0.05) | 24.9 | 17.6 | 4.4 | 1.4 | 1.8 | 4.4 | 0.04 |
CV (%) | 6.6 | 9.3 | 6.0 | 12.5 | 9.8 | 6.4 | 6.1 |
Treatments | Adjusted Yield (t ha−1) | Total Revenue (USD) | Total Variable Cost (USD) | Net Benefit (USD) | B:C Ratio | |
---|---|---|---|---|---|---|
Grain | Stover | |||||
CK | 1.72 | 3.65 | 496.81 | 594.55 | −97.74 | 0.91 |
N0 | 2.10 | 3.98 | 604.81 | 721.86 | −117.05 | 0.80 |
N60 | 3.66 | 4.41 | 1049.94 | 842.62 | 207.32 | 1.33 |
N120 | 4.99 | 6.48 | 1432.93 | 932.50 | 500.43 | 1.54 |
N180 | 5.12 | 7.37 | 1470.95 | 975.98 | 494.97 | 1.51 |
N240 | 5.19 | 7.11 | 1490.70 | 1019.47 | 471.23 | 1.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhakal, K.; Baral, B.R.; Pokhrel, K.R.; Pandit, N.R.; Gaihre, Y.K.; Vista, S.P. Optimizing N Fertilization for Increasing Yield and Profits of Rainfed Maize Grown under Sandy Loam Soil. Nitrogen 2021, 2, 359-377. https://doi.org/10.3390/nitrogen2030025
Dhakal K, Baral BR, Pokhrel KR, Pandit NR, Gaihre YK, Vista SP. Optimizing N Fertilization for Increasing Yield and Profits of Rainfed Maize Grown under Sandy Loam Soil. Nitrogen. 2021; 2(3):359-377. https://doi.org/10.3390/nitrogen2030025
Chicago/Turabian StyleDhakal, Krishna, Bandhu Raj Baral, Keshab Raj Pokhrel, Naba Raj Pandit, Yam Kanta Gaihre, and Shree Prasad Vista. 2021. "Optimizing N Fertilization for Increasing Yield and Profits of Rainfed Maize Grown under Sandy Loam Soil" Nitrogen 2, no. 3: 359-377. https://doi.org/10.3390/nitrogen2030025
APA StyleDhakal, K., Baral, B. R., Pokhrel, K. R., Pandit, N. R., Gaihre, Y. K., & Vista, S. P. (2021). Optimizing N Fertilization for Increasing Yield and Profits of Rainfed Maize Grown under Sandy Loam Soil. Nitrogen, 2(3), 359-377. https://doi.org/10.3390/nitrogen2030025