Fractal and Multifractal Analysis as Methods of Quantifying Dendritic Complexity Changes in the Traumatic Brain Injury Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Groups
2.2. Surgical Procedure and Oxygen Treatment
2.3. Tissue Preparation and Immunostaining
2.4. Recording Cells and Preparing the Image
2.5. Morphometric Analysis
2.5.1. Euclidean and Monofractal Analysis
2.5.2. Multifractal Analysis
2.6. Statistical Analysis
3. Results
3.1. Euclidean and Monofractal Analysis
3.2. Multifractal Analysis
3.2.1. Generalized Dimension Spectra
3.2.2. Hölder Exponents Spectra
3.2.3. Singularity Spectra
3.2.4. Extracted Parameters
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maas, A.I.R.; Menon, D.K.; Adelson, P.D.; Andelic, N.; Bell, M.J.; Belli, A.; Bragge, P.; Brazinova, A.; Büki, A.; Chesnut, R.M.; et al. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017, 16, 987–1048. [Google Scholar] [CrossRef] [PubMed]
- Ratliff, W.A.; Delic, V.; Pick, C.G.; Citron, B.A. Dendritic arbour complexity and spine density changes after repetitive mild traumatic brain injury and neuroprotective treatments. Brain Res. 2020, 1746, 147019. [Google Scholar] [CrossRef]
- Parker, T.; Rees, R.; Rajagopal, S.; Griffin, C.; Goodliffe, L.; Dilley, M.; Jenkins, P.O. Post-traumatic amnesia. Pract. Neurol. 2022, 22, 129–137. [Google Scholar] [CrossRef]
- Ratliff, W.A.; Saykally, J.N.; Keeley, K.L.; Driscoll, D.C.; Murray, K.E.; Okuka, M.; Mervis, R.F.; Delic, V.; Citron, B.A. Sidestream smoke affects dendritic complexity and astrocytes after model mild closed head traumatic brain injury. Cell Mol. Neurobiol. 2022, 42, 1453–1463. [Google Scholar] [CrossRef]
- Jeremic, R.; Pekovic, S.; Lavrnja, I.; Bjelobaba, I.; Djelic, M.; Dacic, S.; Brkic, P. Hyperbaric oxygenation prevents loss of immature neurons in the adult hippocampal dentate gyrus following brain injury. Int. J. Mol. Sci. 2023, 24, 4261. [Google Scholar] [CrossRef]
- Ng, S.; Lee, A. Traumatic brain injuries: Pathophysiology and potential therapeutic targets. Front. Cell Neurosci. 2019, 13, 528. [Google Scholar] [CrossRef]
- Nogueira, A.; Hoshino, H.; Ortega, N.; Dos Santos, B.; Teixeira, M. Adult human neurogenesis: Early studies clarify recent controversies and go further. Metab. Brain Dis. 2022, 37, 153–172. [Google Scholar] [CrossRef]
- Ribeiro, F.; Xapelli, S. An overview of adult neurogenesis. Adv. Exp. Med. Biol. 2021, 1331, 77–94. [Google Scholar]
- Gao, X.; Chen, J. Moderate traumatic brain injury promotes neural precursor proliferation without increasing neurogenesis in the adult hippocampus. Exp. Neurol. 2013, 239, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.; Hu, W.; Wang, X.; Gao, X.; He, C.; Chen, J. Traumatic brain injury causes aberrant migration of adult-born neurons in the hippocampus. Sci. Rep. 2016, 6, 21793. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, X.; Michalski, S.; Zhao, S.; Chen, J. Traumatic brain injury severity affects neurogenesis in adult mouse hippocampus. J. Neurotrauma 2016, 33, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Marzano, L.; de Castro, F.; Machado, C.; de Barros, J.; Macedo, E.; Cordeiro, T.; Teixeira, A.L.; de Miranda, A.S. Potential role of adult hippocampal neurogenesis in traumatic brain injury. Curr. Med. Chem. 2022, 29, 3392–3419. [Google Scholar] [CrossRef] [PubMed]
- Bodanapally, U.; Sours, C.; Zhuo, J.; Shanmuganathan, K. Imaging of traumatic brain injury. Radiol. Clin. N. Am. 2015, 53, 695–715. [Google Scholar] [CrossRef]
- Rakhit, S.; Nordness, M.; Lombardo, S.; Cook, M.; Smith, L.; Patel, M. Management and challenges of severe traumatic brain injury. Semin Respir. Crit. Care Med. 2021, 42, 127–144. [Google Scholar] [CrossRef]
- Ahmadi, F.; Khalatbary, A. A review on the neuroprotective effects of hyperbaric oxygen therapy. Med. Gas. Res. 2021, 11, 72–82. [Google Scholar] [CrossRef]
- Jones, M.; Kaighley, B.; Nathaniel, H.; Wyatt, H. Hyperbaric Physics; StatPearls: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK448104/ (accessed on 5 February 2025).
- Woo, J.; Min, J.; Lee, Y.; Roh, H. Effects of hyperbaric oxygen therapy on inflammation, oxidative/antioxidant balance, and muscle damage after acute exercise in normobaric, normoxic and hypobaric, hypoxic environments: A pilot study. Int. J. Environ. Res. Public Health 2020, 17, 7377. [Google Scholar] [CrossRef]
- Maroon, J. The effect of hyperbaric oxygen therapy on cognition, performance, proteomics, and telomere length—The difference between zero and one: A case report. Front. Neurol. 2022, 13, 949536. [Google Scholar] [CrossRef] [PubMed]
- Velho, V.; Hrushikesh, K.; Bhople, L.; Palande, L. Role of hyperbaric oxygen therapy in traumatic brain injury—Evidence-based consensus. Indian J. Neurotrauma 2020, 42, 42–45. [Google Scholar] [CrossRef]
- Daly, S.; Thorpe, M.; Rockswold, S.; Hubbard, M.; Bergman, T.; Samadani, U.; Rockswold, G. Hyperbaric oxygen therapy in the treatment of acute severe traumatic brain injury: A systematic review. J. Neurotrauma 2018, 35, 623–629. [Google Scholar] [CrossRef]
- Balestra, C.; Mrakic-Sposta, S.; Virgili, F. Oxygen variations—Insights into hypoxia, hyperoxia and hyperbaric hyperoxia—Is the dose the clue? Int. J. Mol. Sci. 2023, 24, 13472. [Google Scholar] [CrossRef]
- Díaz Beltrán, L.; Madan, C.R.; Finke, C.; Krohn, S.; Di Ieva, A.; Esteban, F.J. Fractal dimension analysis in neurological disorders: An overview. Adv. Neurobiol. 2024, 36, 313–328. [Google Scholar]
- Davidson, J.M.; Zhang, L.; Yue, G.H.; Di Ieva, A. Fractal dimension studies of the brain shape in aging and neurodegenerative diseases. Adv. Neurobiol. 2024, 36, 329–363. [Google Scholar] [PubMed]
- Puskas, N.; Zaletel, I.; Stefanovic, B.; Ristanovic, D. Fractal dimension of apical dendritic arborization differs in the superficial and the deep pyramidal neurons of the rat cerebral neocortex. Neurosci. Lett. 2015, 589, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Zaletel, I.; Ristanović, D.; Stefanović, B.D.; Puškaš, N. Modified Richardson’s method versus the box-counting method in neuroscience. J. Neurosci. Methods 2015, 242, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Pantic, I.; Jeremic, R.; Dacic, S.; Pekovic, S.; Pantic, S.; Djelic, M.; Vitic, Z.; Brkic, P.; Brodski, C. Gray-Level Co-Occurrence Matrix Analysis of Granule Neurons of the Hippocampal Dentate Gyrus Following Cortical Injury. Microsc. Microanal. 2020, 26, 166–172. [Google Scholar] [CrossRef]
- Brkic, P.; Stojiljkovic, M.; Jovanovic, T.; Dacic, S.; Lavrnja, I.; Savic, D.; Parabucki, A.; Bjelobaba, I.; Rakic, L.; Pekovic, S. Hyperbaric oxygenation improves locomotor ability by enhancing neuroplastic responses after cortical ablation in rats. Brain Inj. 2012, 26, 1273–1284. [Google Scholar] [CrossRef]
- Brkic, P.; Mitrovic, A.; Rakic, M.; Grajic, M.; Jovanovic, T. Hyperbaric oxygen therapy of angiopathic changes in patients with inherited gene imbalance. Srp. Arh. Celok. Lek. 2007, 135, 669–671. [Google Scholar] [CrossRef]
- Ristanović, D.; Milosević, N.T. Fractal analysis: Methodologies for biomedical researchers. Theor. Biol. Forum 2012, 105, 99–118. [Google Scholar]
- Ristanović, D.; Milošević, N.T.; Marić, D.L. On the classification of normally distributed neurons: An application to human dentate nucleus. Biol. Cybern. 2011, 104, 175–183. [Google Scholar] [CrossRef]
- Karperien, A.L. FracLac for ImageJ 2013. Available online: https://imagej.net/ij/plugins/fraclac/FLHelp/Introduction.htm (accessed on 5 June 2025).
- Rajković, N.; Krstonošić, B.; Milošević, N. Box-counting method of 2D neuronal image: Method modification and quantitative analysis demonstrated on images from the monkey and human brain. Comput. Math. Methods Med. 2017, 2017, 8967902. [Google Scholar] [CrossRef]
- Vranes, V.; Rajković, N.; Li, X.; Plataniotis, K.N.; Raković, N.T.; Milovanović, J.; Kanjer, K.; Radulovic, M.; Milošević, N.T. Size and shape filtering of malignant cell clusters within breast tumors identifies scattered individual epithelial cells as the most valuable histomorphological clue in the prognosis of distant metastasis risk. Cancers 2019, 11, 1615. [Google Scholar] [CrossRef]
- Salat, H.; Murcio, R.; Arcaute, E. Multifractal Methodology. Phys. A Stat. Mech. Its Appl. 2017, 473, 467–487. [Google Scholar] [CrossRef]
- Nedeljković, Z.; Krstonošić, B.; Milošević, N.; Stanojlović, O.; Hrnčić, D.; Rajković, N. Multifractal Analysis of Neuronal Morphology in the Human Dorsal Striatum: Age-Related Changes and Spatial Differences. Fractal Fract. 2024, 8, 514. [Google Scholar] [CrossRef]
- Chhabra, A.B.; Meneveau, C.; Jensen, R.V.; Sreenivasan, K.R. Direct Determination of the f(α) Singularity Spectrum and Its Application to Fully Developed Turbulence. Phys. Rev. A 1989, 40, 5284–5294. [Google Scholar] [CrossRef]
- Bouda, M.; Caplan, J.S.; Saiers, J.E. Box-Counting Dimension Revisited: Presenting an Efficient Method of Minimizing Quantization Error and an Assessment of the Self-Similarity of Structural Root Systems. Front. Plant Sci. 2016, 7, 149. [Google Scholar] [CrossRef]
- Riffenburgh, R.H. Statistics in Medicine; Academic Press: London, UK, 1999. [Google Scholar]
- Saykally, J.N.; Ratliff, W.A.; Keeley, K.L.; Pick, C.G.; Mervis, R.F.; Citron, B.A. Repetitive mild closed head injury alters protein expression and dendritic complexity in a mouse model. J. Neurotrauma 2018, 35, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Redell, J.; Maynard, M.; Underwood, E.; Vita, S.; Dash, P.; Kobori, N. Traumatic brain injury and hippocampal neurogenesis: Functional implications. Exp. Neurol. 2020, 331, 113372. [Google Scholar] [CrossRef] [PubMed]
- Paterno, R.; Folweiler, K.; Cohen, A. Pathophysiology and treatment of memory dysfunction after traumatic brain injury. Curr. Neurol. Neurosci. Rep. 2017, 17, 52. [Google Scholar] [CrossRef]
- Capizzi, A.; Woo, J.; Verduzco-Gutierrez, M. Traumatic brain injury: An overview of epidemiology, pathophysiology, and medical management. Med. Clin. N. Am. 2020, 104, 213–238. [Google Scholar] [CrossRef]
- Lopes, R. Multifractal Analysis in Neuroimaging. In The Fractal Geometry of the Brain; Di Ieva, A., Ed.; Advances in Neurobiology; Springer: Cham, Switzerland, 2024; Volume 36. [Google Scholar]
- França, L.G.S.; Miranda, J.G.V.; Leite, M.; Sharma, N.K.; Walker, M.C.; Lemieux, L.; Wang, Y. Fractal and Multifractal Properties of Electrographic Recordings of Human Brain Activity: Toward Its Use as a Signal Feature for Machine Learning in Clinical Applications. Front. Physiol. 2018, 9, 1767. [Google Scholar] [CrossRef]
- Fayyaz, Z.; Bahadorian, M.; Doostmohammadi, J.; Davoodnia, V.; Khodadadian, S.; Lashgari, R. Multifractal detrended fluctuation analysis of continuous neural time series in primate visual cortex. J. Neurosci. Methods 2019, 312, 84–92. [Google Scholar] [CrossRef]
- Fernández, E.; Bolea, J.A.; Ortega, G.; Louis, E. Are Neurons Multifractals? J. Neurosci. Methods 1999, 89, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.G.; Lange, G.D. Biological Cellular Morphometry-Fractal Dimensions, Lacunarity and Multifractals. In Fractals in Biology and Medicine; Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R., Eds.; Mathematics and Biosciences in Interaction; Birkhäuser: Basel, Switzerland, 1998. [Google Scholar]
- Jelinek, H.F.; Cornforth, D.J.; Roberts, A.J.; Landini, G.; Bourke, P.; Iorio, A. Image Processing of Finite Size Rat Retinal Ganglion Cells Using Multifractal and Local Connected Fractal Analysis. In AI 2004: Advances in Artificial Intelligence; Webb, G.I., Yu, X., Eds.; AI 2004. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3339. [Google Scholar]
- Mu, J.; Krafft, P.; Zhang, J. Hyperbaric oxygen therapy promotes neurogenesis: Where do we stand? Med. Gas Res. 2011, 1, 14. [Google Scholar] [PubMed]
- Yang, Y.; Wei, H.; Zhou, X.; Zhang, F.; Wang, C. Hyperbaric oxygen promotes neural stem cell proliferation by activating vascular endothelial growth factor/extracellular signal-regulated kinase signaling after traumatic brain injury. NeuroReport 2017, 28, 1232–1238. [Google Scholar] [PubMed]
- Ye, Y.; Feng, Z.; Tian, S.; Yang, Y.; Jia, Y.; Wang, G.; Wang, J.; Bai, W.; Li, J.; He, X.; et al. HBO alleviates neural stem cell pyroptosis via lncRNA-H19/miR-423-5p/NLRP3 axis and improves neurogenesis after oxygen glucose deprivation. Oxid. Med. Cell Longev. 2022, 2022, 9030771. [Google Scholar] [CrossRef]
- Wang, R.; Yang, Y.; Chang, H. The SDF1-CXCR4 axis is involved in the hyperbaric oxygen therapy-mediated neuronal cells migration in transient brain ischemic rats. Int. J. Mol. Sci. 2022, 23, 1780. [Google Scholar] [CrossRef]
Parameter | Groups | Median (Range) | SD | p |
---|---|---|---|---|
Ad (μm2) | ||||
SHBO | 254 (918) | 220 | *** L | |
L | 109 (128) | 37 | ||
LHBO | 241 (478) | 140 | *** L | |
Rd | ||||
SHBO | 0.241 (0.467) | 0.15 | - | |
L | 0.170 (0.746) | 0.20 | ||
LHBO | 0.261 (0.649) | 0.15 | ||
Nm | ||||
SHBO | 3.30 (3.8) | 1.1 | *** L | |
L | 1.90 (2.20) | 0.7 | ||
LHBO | 2.95 (4.50) | 1.0 | *** L | |
Dbin | ||||
SHBO | 1.359 (0.253) | 0.06 | * LHBO | |
L | 1.325 (0.178) | 0.05 | *** SHBO | |
LHBO | 1.427 (0.250) | 0.06 | *** L | |
Dout | ||||
SHBO | 1.193 (0.106) | 0.03 | ** L | |
L | 1.163 (0.059) | 0.02 | *** SHBO | |
LHBO | 1.164 (0.064) | 0.02 | ** SHBO | |
Dskel | ||||
SHBO | 1.062 (0.218) | 0.05 | *** L | |
L | 1.017 (0.123) | 0.04 | ||
LHBO | 1.074 (0.124) | 0.04 | *** L |
Parameter | Median Value (Range) | Kruskal–Wallis H | df | p | ||
---|---|---|---|---|---|---|
Group L | Group LHBO | Group SHBO | ||||
DQ min | 1.133 (0.542) | 1.276 (0.381) | 1.182 (1.031) | 19.250 | 2 | <0.001 |
DQ max | 2.142 (1.372) | 2.168 (0.656) | 2.069 (1.384) | 2.565 | 2 | 0.277 |
DQ span | 1.022 (0.904) | 0.936 (0.651) | 0.875 (1.065) | 5.064 | 2 | 0.079 |
α min | 1.106 (1.076) | 1.243 (0.384) | 1.131 (1.696) | 16.142 | 2 | <0.001 |
α max | 2.329 (1.591) | 2.338 (0.741) | 2.239 (1.598) | 2.731 | 2 | 0.255 |
α span | 1.220 (0.723) | 1.143 (0.690) | 1.093 (0.875) | 3.072 | 2 | 0.215 |
f(α) min | 0.356 (0.360) | 0.426 (0.332) | 0.482 (0.426) | 25.926 | 2 | <0.001 |
f(α) max | 1.177 (0.286) | 1.340 (0.374) | 1.279 (0.326) | 21.096 | 2 | <0.001 |
f(α) span | 0.872 (0.395) | 0.888 (0.350) | 0.809 (0.478) | 10.255 | 2 | 0.006 |
AUS DQ(Q) | 30.230 (14.947) | 32.318 (7.524) | 30.548 (21.287) | 8.398 | 2 | 0.015 |
AUS α(Q) | 33.393 (19.219) | 35.284 (8.346) | 33.610 (26.228) | 6.656 | 2 | 0.036 |
AUS f(α) | 14.952 (3.404) | 16.965 (6.772) | 17.558 (6.525) | 26.233 | 2 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeremić, R.; Rajković, N.; Peković, S.; Dacić, S.; Lavrnja, I.; Bjelobaba, I.; Jeremić, M.; Baščarević, V.; Brkić, P.; Milošević, N.T.; et al. Fractal and Multifractal Analysis as Methods of Quantifying Dendritic Complexity Changes in the Traumatic Brain Injury Model. Fractal Fract. 2025, 9, 590. https://doi.org/10.3390/fractalfract9090590
Jeremić R, Rajković N, Peković S, Dacić S, Lavrnja I, Bjelobaba I, Jeremić M, Baščarević V, Brkić P, Milošević NT, et al. Fractal and Multifractal Analysis as Methods of Quantifying Dendritic Complexity Changes in the Traumatic Brain Injury Model. Fractal and Fractional. 2025; 9(9):590. https://doi.org/10.3390/fractalfract9090590
Chicago/Turabian StyleJeremić, Rada, Nemanja Rajković, Sanja Peković, Sanja Dacić, Irena Lavrnja, Ivana Bjelobaba, Marija Jeremić, Vladimir Baščarević, Predrag Brkić, Nebojša T. Milošević, and et al. 2025. "Fractal and Multifractal Analysis as Methods of Quantifying Dendritic Complexity Changes in the Traumatic Brain Injury Model" Fractal and Fractional 9, no. 9: 590. https://doi.org/10.3390/fractalfract9090590
APA StyleJeremić, R., Rajković, N., Peković, S., Dacić, S., Lavrnja, I., Bjelobaba, I., Jeremić, M., Baščarević, V., Brkić, P., Milošević, N. T., & Zaletel, I. (2025). Fractal and Multifractal Analysis as Methods of Quantifying Dendritic Complexity Changes in the Traumatic Brain Injury Model. Fractal and Fractional, 9(9), 590. https://doi.org/10.3390/fractalfract9090590