A Brézis–Oswald-Type Result for the Fractional (r, q)-Laplacian Problems and Its Application
Abstract
1. Introduction
2. Preliminaries
3. Variational Setting and a Brezis–Oswald-Type Result
- (F1)
- is a Carathéodory function.
- (F2)
- for every , and there is a positive constant such that
- (F3)
- and , being uniform in .
- (F4)
- The function is strictly decreasing in for almost all .
4. Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ambrosio, V.; Rǎdulescu, V.D. Fractional double-phase patterns: Concentration and multiplicity of solutions. J. Math. Pures Appl. 2020, 142, 101–145. [Google Scholar] [CrossRef]
- Marano, S.A.; Mosconi, S. Some recent results on the Dirichlet problem for (p,q)-Laplace equations. Discrete Contin. Dyn. Syst.-S 2018, 11, 279–291. [Google Scholar] [CrossRef]
- Alves, C.O.; Ambrosio, V.; Isernia, T. Existence, multiplicity and concentration for a class of fractional p&q Laplacian problems in . Commun. Pure Appl. Anal. 2019, 18, 2009–2045. [Google Scholar]
- Ambrosio, V.; Isernia, T. Multiplicity of positive solutions for a fractional p&q-Laplacian problem in . J. Math. Anal. Appl. 2021, 501, 124487. [Google Scholar]
- Bhakta, M.; Mukherjee, D. Multiplicity results for (p,q) fractional elliptic equations involving critical nonlinearities. Adv. Differ. Equ. 2019, 24, 185–228. [Google Scholar] [CrossRef]
- Brezis, H.; Oswald, L. Remarks on sublinear elliptic equations. Nonlinear Anal. 1986, 10, 55–64. [Google Scholar] [CrossRef]
- Biagi, S.; Mugnai, D.; Vecchi, E. A Brézis-Oswald approach for mixed local and nonlocal operators. Commun. Contemp. Math. 2024, 26, 2250057. [Google Scholar] [CrossRef]
- Brasco, L.; Franzina, G. Convexity properties of Dirichlet integrals and Picone-type inequalities. Kodai Math. J. 2014, 37, 769–799. [Google Scholar] [CrossRef]
- Brasco, L.; Squassina, M. Optimal solvability for a nonlocal at critical growth. J. Differ. Equ. 2018, 264, 2242–2269. [Google Scholar] [CrossRef]
- Carvalho, M.L.; Goncalves, J.V.; Silva, E.D.; Santos, C.A.P. A Type of Brézis–Oswald Problem to the Φ-Laplacian Operator with Very Singular Term. Milan J. Math. 2018, 86, 53–80. [Google Scholar] [CrossRef]
- Díaz, J.I.; Saa, J.E. Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. Comptes Rendus Acad. Sci. Série I 1987, 305, 521–524. [Google Scholar]
- Giacomoni, J.; Gouasmia, A.; Mokrane, A. Discrete Picone inequalities and applications to non local and non homogenenous operators. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2022, 116, 100. [Google Scholar] [CrossRef]
- Kim, I.H.; Kim, Y.-H. Existence, uniqueness, and localization of positive solutions to nonlocal problems of the Kirchhoff type via the global minimum principle of Ricceri. AIMS Math. 2025, 10, 4540–4557. [Google Scholar] [CrossRef]
- Mugnai, D.; Pinamonti, A.; Vecchi, E. Towards a Brezis-Oswald-type result for fractional problems with Robin boundary conditions. Calc. Var. Partial. Differ. Equ. 2020, 59, 1–25. [Google Scholar] [CrossRef]
- Faria, L.F.O.; Miyagaki, O.H.; Motreanu, D. Comparison and positive solutions for problems with the (p,q)-Laplacian and a convection term. Proc. Edinb. Math. Soc. 2014, 57, 687–698. [Google Scholar] [CrossRef]
- Frank, R.L.; Seiringer, R. Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 2008, 255, 3407–3430. [Google Scholar] [CrossRef]
- Ricceri, B. Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions. Adv. Nonlinear Anal. 2024, 13, 20230104. [Google Scholar] [CrossRef]
- Kirchhoff, G.R. Vorlesungen über Mathematische Physik, Mechanik; Teubner: Leipzig, Germany, 1876. [Google Scholar]
- Fiscella, A.; Valdinoci, E. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 2014, 94, 156–170. [Google Scholar] [CrossRef]
- Huang, T.; Deng, S. Existence of ground state solutions for Kirchhoff type problem without the Ambrosetti–Rabinowitz condition. Appl. Math. Lett. 2021, 113, 106866. [Google Scholar] [CrossRef]
- Kim, I.H.; Kim, Y.-H.; Park, K. Multiple solutions to a non-local problem of Schrödinger-Kirchhoff type in . Fractal Fract. 2023, 7, 627. [Google Scholar] [CrossRef]
- Nyamoradi, N. Existence of three solutions for Kirchhoff nonlocal operators of elliptic type. Math. Commun. 2013, 18, 489–502. [Google Scholar]
- Pucci, P.; Xiang, M.Q.; Zhang, B.L. Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in . Calc. Var. Partial Differ. Equ. 2015, 54, 2785–2806. [Google Scholar] [CrossRef]
- Xiang, M.Q.; Zhang, B.L.; Ferrara, M. Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian. J. Math. Anal. Appl. 2015, 424, 1021–1041. [Google Scholar] [CrossRef]
- Biagi, S.; Vecchi, E. On a Brezis-Oswald-type result for degenerate Kirchhoff problems. Discrete Contin. Dyn. Syst.-S 2024, 44, 702–717. [Google Scholar] [CrossRef]
- Fiscella, A. Schrödinger-Kirchhoff-Hardy p-fractional equations without the Ambrosetti-Rabinowitz condition. Discrete Contin. Dyn. Syst.-S 2020, 13, 1993–2007. [Google Scholar]
- Kim, Y.-H. Existence and Uniqueness of Solution to the p-Laplacian Equations Involving Discontinuous Kirchhoff Functions Via A Global Minimum Principle of Ricceri. Minimax Theory Appl. 2025, 10, 34–42. [Google Scholar]
- Kim, Y.-H. Existence and uniqueness of a positive solution to double phase problems involving discontinuous Kirchhoff type function. Bull. Korean Math. Soc. 2024, in press.
- Kim, Y.-H. Existence and Uniqueness of Solutions to Non-Local Problems of Brézis-Oswald Type and Its Application. Fractal Fract. 2024, 8, 622. [Google Scholar] [CrossRef]
- Adams, R.A.; Fournier, J.J. F Sobolev Spaces, 2nd ed.; Academic Press: New York, NY, USA; London, UK, 2003. [Google Scholar]
- Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Franzina, G.; Palatucci, G. Fractional p-eigenvalues. Riv. Mat. Univ. Parma 2014, 5, 373–386. [Google Scholar]
- Pucci, P.; Serrin, J. A mountain pass theorem. J. Differ. Equ. 1985, 60, 142–149. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-H.; Kim, I.H. A Brézis–Oswald-Type Result for the Fractional (r, q)-Laplacian Problems and Its Application. Fractal Fract. 2025, 9, 412. https://doi.org/10.3390/fractalfract9070412
Kim Y-H, Kim IH. A Brézis–Oswald-Type Result for the Fractional (r, q)-Laplacian Problems and Its Application. Fractal and Fractional. 2025; 9(7):412. https://doi.org/10.3390/fractalfract9070412
Chicago/Turabian StyleKim, Yun-Ho, and In Hyoun Kim. 2025. "A Brézis–Oswald-Type Result for the Fractional (r, q)-Laplacian Problems and Its Application" Fractal and Fractional 9, no. 7: 412. https://doi.org/10.3390/fractalfract9070412
APA StyleKim, Y.-H., & Kim, I. H. (2025). A Brézis–Oswald-Type Result for the Fractional (r, q)-Laplacian Problems and Its Application. Fractal and Fractional, 9(7), 412. https://doi.org/10.3390/fractalfract9070412