An Application of Liouville–Caputo-Type Fractional Derivatives on Certain Subclasses of Bi-Univalent Functions
Abstract
1. Introduction and Preliminary Results
Liouville–Caputo’s Fractional-Order Derivative (FD)
2. Coefficient Bounds for the Function Class
3. Initial Bounds for the Function Class
4. Fekete–Szegö Inequality
5. Corollaries and Consequences of the Estimates
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, 259; Springer: New York, NY, USA, 1983. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of star-like functions. Canad. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar] [CrossRef]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Univ.-Babes Math. 1986, 31, 70–77. [Google Scholar] [CrossRef]
- Taha, T.S. Topics in Univalent Function Theory. Ph.D. Thesis, University of London, London, UK, 1981. [Google Scholar]
- Srivastava, H.M.; Motamednezhad, A.; Adegan, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 8, 172. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. Filomat 2018, 32, 3229–3236. [Google Scholar] [CrossRef]
- Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Pan Am. Math. J. 2012, 22, 15–26. [Google Scholar]
- Aldawish, I.; Al-Hawary, T.; Frasin, B.A. Subclasses of bi-univalent functions defined by Frasin differential operator. Mathematics 2020, 8, 783. [Google Scholar] [CrossRef]
- Shaba, T.G.; Araci, S.; Adebesin, B.O.; Tchier, F.; Zainab, S.; Khan, B. Sharp bounds of the Fekete–Szegö Problem and second Hankel determinant for certain bi-univalent functions defined by a novel q-differential operator associated with q-Limaçon domain. Fractal Fract. 2023, 7, 506. [Google Scholar] [CrossRef]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach Science Publishers: Montreux, Switzerland, 1993. [Google Scholar]
- Srivastava, H.M.; Owa, S. An application of the fractional derivative. Math. Jpn. 1984, 29, 383–389. [Google Scholar]
- Srivastava, H.M.; Saigo, M.; Owa, S. A Class of distortion theorem of fractional calculus. J. Math. Anal. Appl. 1988, 131, 412–420. [Google Scholar] [CrossRef]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent, Part II. J. R. Astron. Soc. 1967, 13, 529. [Google Scholar] [CrossRef]
- Salah, J.; Darus, M. A subclass of uniformly convex functions associated with a fractional calculus operator involving Caputo’s fractional differentiation. Acta Univ. Apulensis. 2010, 24, 295–304. [Google Scholar]
- Wanas, A.K.; Pall-Szabo, A.O. Coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions. Stud. Univ. Babes-Bolyai Math. 2021, 66, 659–666. [Google Scholar] [CrossRef]
- Breaz, D.; Orha, H.; Cotîrla, L.-I.; Arıkan, H. A new subclass of bi-univalent functions defined by a certain integral operator. Axioms 2023, 12, 172. [Google Scholar] [CrossRef]
- Zaprawa, P. Estimates of initial coefficients for bi-univalent functions. Abstr. Appl. Anal. 2014, 2014, 357480. [Google Scholar] [CrossRef]
- Alsoboh, A.; Oros, G.I. A class of bi-Univalent functions in a leaf-like omain defined through Subordination via q¸-Calculus. Mathematics 2024, 12, 1594. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck and Rupercht: Göttingen, Germany, 1975. [Google Scholar]
- Zaprawa, P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc.-Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldawish, I.; Srivastava, H.M.; El-Deeb, S.M.; Murugusundaramoorthy, G.; Vijaya, K. An Application of Liouville–Caputo-Type Fractional Derivatives on Certain Subclasses of Bi-Univalent Functions. Fractal Fract. 2025, 9, 505. https://doi.org/10.3390/fractalfract9080505
Aldawish I, Srivastava HM, El-Deeb SM, Murugusundaramoorthy G, Vijaya K. An Application of Liouville–Caputo-Type Fractional Derivatives on Certain Subclasses of Bi-Univalent Functions. Fractal and Fractional. 2025; 9(8):505. https://doi.org/10.3390/fractalfract9080505
Chicago/Turabian StyleAldawish, Ibtisam, Hari M. Srivastava, Sheza M. El-Deeb, Gangadharan Murugusundaramoorthy, and Kaliappan Vijaya. 2025. "An Application of Liouville–Caputo-Type Fractional Derivatives on Certain Subclasses of Bi-Univalent Functions" Fractal and Fractional 9, no. 8: 505. https://doi.org/10.3390/fractalfract9080505
APA StyleAldawish, I., Srivastava, H. M., El-Deeb, S. M., Murugusundaramoorthy, G., & Vijaya, K. (2025). An Application of Liouville–Caputo-Type Fractional Derivatives on Certain Subclasses of Bi-Univalent Functions. Fractal and Fractional, 9(8), 505. https://doi.org/10.3390/fractalfract9080505