Optical Solutions of the Nonlinear Kodama Equation with the M-Truncated Derivative via the Extended (G′/G)-Expansion Method
Abstract
1. Introduction
2. Preliminary
2.1. The M-Truncated Fractional-Derivative and Its Properties
- 1.
- ;
- 2.
- ;
- 3.
- ;
- 4.
- ;
- 5.
- .
2.2. The Extended -Expansion Method [20]
2.3. Traveling Wave Transformation
3. Optical Solutions of NLKE-MTD
4. Numerical Simulation
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alazman, I.; Alkahtani, B.S.T.; Mishra, M.N. Dynamic of bifurcation, chaotic structure and multi soliton of fractional nonlinear Schrödinger equation arise in plasma physics. Sci. Rep. 2024, 14, 25781. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hussain, E. Qualitative analysis and traveling wave solutions of a (3+1)-dimensional generalized nonlinear Konopelchenko-Dubrovsky-Kaup-Kupershmidt system. Fractal Fract. 2025, 9, 285. [Google Scholar] [CrossRef]
- Ali, A.; Senu, N.; Wahi, N.; Almakayeel, N.; Ahmadian, A. An adaptive algorithm for numerically solving fractional partial differential equations using Hermite wavelet artificial neural networks. Commun. Nonlinear Sci. 2024, 137, 108121. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Wang, X.C.; Wang, Y.J. On a stochastic heat equation with first order fractional noises and applications to finance. J. Math. Anal. Appl. 2012, 396, 656–669. [Google Scholar] [CrossRef]
- Wilson, J.P.; Ji, C.; Dai, W.Z. A new variable-order fractional momentum operator for wave absorption when solving Schrödinger equations. J. Comput. Phys. 2024, 511, 113123. [Google Scholar] [CrossRef]
- Xu, T.Z.; Liu, J.H.; Wang, Y.Y.; Dai, C.Q. Vector multipole solitons of fractional-order coupled saturable nonlinear Schrödinger equation. Chaos Solitons Fract. 2024, 186, 115230. [Google Scholar] [CrossRef]
- Liu, C.Y. The traveling wave solution and dynamics analysis of the fractional order generalized Pochhammer–Chree equation. AIMS Math. 2024, 9, 33956–33972. [Google Scholar] [CrossRef]
- Zhao, S. Chaos analysis and traveling wave solutions for fractional (3+1)-dimensional Wazwaz Kaur Boussinesq equation with beta derivative. Sci. Rep. 2024, 14, 23034. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y. The Hautus-Type inequality for abstract fractional cauchy problems and its observability. J. Math. 2024, 2024, 6179980. [Google Scholar]
- Li, C.Y. Zero-r Law on the analyticity and the uniform continuity of fractional resolvent families. Integr. Equ. Oper. Theory 2024, 96, 34. [Google Scholar]
- Ye, Y.L.; Fan, H.T.; Li, Y.J.; Liu, X.Y.; Zhang, H.B. Deep neural network methods for solving forward and inverse problems of time fractional diffusion equations with conformable derivative. Neurocomputing 2022, 509, 177–192. [Google Scholar] [CrossRef]
- Salah, B.; El-Zahar, E.R.; Aljohani, A.F.; Ebaid, A.; Krid, M. Optical soliton solutions of the time-fractional perturbed Fokas-Lenells equation: Riemann-Liouville fractional derivative. Optik 2019, 183, 1114–1119. [Google Scholar] [CrossRef]
- Akram, G.; Sadaf, M.; Zainab, I. Observations of fractional effects of β-derivative and M-truncated derivative for space time fractional Phi-4 equation via two analytical techniques. Chaos Soliton Fract. 2022, 154, 111645. [Google Scholar] [CrossRef]
- Zafar, A.; Bekir, A.; Raheel, M.; Razzaq, W. Optical soliton solutions to Biswas–Arshed model with truncated M-fractional derivative. Optik 2020, 222, 165355. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Iqbal, N.; Sidaoui, R.; Ali, E.E. Dynamical behavior of the fractional nonlinear Kodama equation in plasma physics and optics. Mod. Phys. Lett. B 2024, 39, 2450434. [Google Scholar] [CrossRef]
- Algolam, M.S.; Ahmed, A.I.; Alshammary, H.M.; Mansour, F.E.; Mohammed, W.W. The impact of standard Wiener process on the optical solutions of the stochastic nonlinear Kodama equation using two different methods. J. Low Freq. Noise Vib. Act. Control 2024, 43, 1939–1952. [Google Scholar] [CrossRef]
- Gu, M.S.; Liu, F.M.; Li, J.L.; Peng, C.; Li, Z. Explicit solutions of the generalized Kudryashov’s equation with truncated M-fractional derivative. Sci. Rep. 2024, 14, 21714. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Li, Z. Dynamic behavior and optical soliton for the M-Truncated fractional Paraxial wave equation arising in a liquid crystal model. Fractal Fract. 2024, 8, 348. [Google Scholar] [CrossRef]
- Farooq, A.; Khan, M.I.Q.K.; Nisar, S.; Shah, N.A. A detailed analysis of the improved modified Korteweg-de Vries equation via the Jacobi elliptic function expansion method and the application of truncated M-fractional derivatives. Results Phys. 2024, 59, 107604. [Google Scholar] [CrossRef]
- Li, Z.; Li, P.; Han, T.Y. White noise functional solutions for Wick-type stochastic fractional mixed KdV-mKdV equation using extended (G′/G)-expansion method. Adv. Math. Phys. 2021, 2021, 9729905. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z. Optical Solutions of the Nonlinear Kodama Equation with the M-Truncated Derivative via the Extended (G′/G)-Expansion Method. Fractal Fract. 2025, 9, 300. https://doi.org/10.3390/fractalfract9050300
Li Z. Optical Solutions of the Nonlinear Kodama Equation with the M-Truncated Derivative via the Extended (G′/G)-Expansion Method. Fractal and Fractional. 2025; 9(5):300. https://doi.org/10.3390/fractalfract9050300
Chicago/Turabian StyleLi, Zhao. 2025. "Optical Solutions of the Nonlinear Kodama Equation with the M-Truncated Derivative via the Extended (G′/G)-Expansion Method" Fractal and Fractional 9, no. 5: 300. https://doi.org/10.3390/fractalfract9050300
APA StyleLi, Z. (2025). Optical Solutions of the Nonlinear Kodama Equation with the M-Truncated Derivative via the Extended (G′/G)-Expansion Method. Fractal and Fractional, 9(5), 300. https://doi.org/10.3390/fractalfract9050300