A Novel Family of Starlike Functions Involving Quantum Calculus and a Special Function
Abstract
1. Introduction
2. Preliminary Lemmas
3. Main Results
4. Coefficient Estimates
5. Fekete–Szegö Inequality
6. Toeplitz Determinant
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carathéordory, C. Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann. 1907, 64, 95–115. [Google Scholar] [CrossRef]
- Carathéordory, C. Über den Variabilitätsbereich der Fourier’schen Konstanten von positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 1911, 32, 193–217. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceeding of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, UK, 1994; pp. 157–169. [Google Scholar]
- Kargar, R.; Ebadian, A.; Sokól, J. On Booth lemniscate and starlike functions. Anal. Math. Phys. 2019, 9, 143–154. [Google Scholar] [CrossRef]
- Raza, M.; Zahid, H.; Liu, J. Starlikeness associated with the sine hyperbolic function. Acta Math. Sci. 2024, 44, 1244–1270. [Google Scholar] [CrossRef]
- Ullah, K.; Zainab, S.; Arif, M.; Darus, M.; Shutaywi, M. Radius problems for starlike functions associated with the tan hyperbolic function. J. Funct. Spaces 2021, 2021, 9967640. [Google Scholar] [CrossRef]
- Kumar, V.; Cho, N.E.; Ravichandran, V.; Srivastava, H.M. Sharp coefficient bounds for starlike functions associated with the Bell numbers. Math. Slovaca 2019, 69, 1053–1064. [Google Scholar] [CrossRef]
- Gandhi, S.; Gupta, P.; Nagpal, S.; Ravichandran, V. Starlike functions associated with an Epicycloid. Hacet. J. Math. Stat. 2022, 51, 1637–1660. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlike functions associated with cosine functions. Bull. Iran. Math. Soc. 2021, 47, 1513–1532. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Gul, B.; Arif, M.; Alhefthi, R.K.; Breaz, D.; Cotîrlă, L.I.; Rapeanu, E. On the Study of Starlike Functions Associated with the Generalized Sine Hyperbolic Function. Mathematics 2023, 11, 4848. [Google Scholar] [CrossRef]
- Pólya, G.; Schoenberg, I.J. Remarks on de la Vallee, Poussin means and convex conformal maps of the circle. Pacific J. Math. 1958, 8, 295–334. [Google Scholar] [CrossRef]
- Ruscheweyh, S.T.; Sheil-Small, T. Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture. Comment. Math. Helv. 1973, 48, 119–135. [Google Scholar] [CrossRef]
- Ruscheweyh, S.T. Convolutions in Geometric Function Theory, Seminaire de Mathematiques Superieures; Les Presses de l’Universite de Montreal: Montreal, QC, Canada, 1982. [Google Scholar]
- Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer: New York, NY, USA, 2013. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Khan, Q.; Arif, M.; Raza, M.; Srivastava, G.; Tang, H.; Rehman, S.U. Some applications of a new integral operator in q-analog for multivalent functions. Mathematics 2019, 7, 1178. [Google Scholar] [CrossRef]
- Purohit, S.D.; Raina, R.K. Certain subclasses of analytic functions associated with fractional q-calculus operators. Math. Scand. 2011, 109, 55–70. [Google Scholar] [CrossRef]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Ramachandran, C.; Kavitha, D.; Soupramanien, T. Certain bound for q-starlike and q-convex functions with respect to symmetric points. Int. J. Math. Math. Sci. 2015, 7, 205682. [Google Scholar]
- Raza, M.; Srivastava, H.M.; Arif, M.; Ahmad, K. Coefficient estimates for a certain family of analytic functions involving a q-derivative operator. Ramanujan J. 2021, 55, 53–71. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Arif, M.; Raza, M. Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator. AIMS Math. 2021, 6, 5869–5885. [Google Scholar] [CrossRef]
- Mohammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Mat. Vesn. 2013, 65, 454–465. [Google Scholar]
- Nezir, V.; Mustafa, N. Analytic functions expressed with q-Poisson distribution series. Turk. J. Sci. 2021, 6, 24–30. [Google Scholar]
- Ul-Haq, M.; Raza, M.; Arif, M.; Khan, Q.; Tang, H. q-analogue of differential subordinations. Mathematics 2019, 7, 724. [Google Scholar] [CrossRef]
- Deniz, E.; Orhan, H. Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator. Czechoslovak Math. J. 2010, 60, 79–83. [Google Scholar] [CrossRef]
- Khan, M.F.; Al-shbeil, I.; Khan, S.; Khan, N.; Haq, W.U.; Gong, J. Applications of a q-differential operator to a class of harmonic mappings defined by q-Mittag-Leffler functions. Symmetry 2022, 14, 1905. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.G.; Srivastava, H.M.; Khan, N.; Darus, M.; Tahir, M. A study of some families of multivalent q-starlike functions involving higher-order q-derivatives. Mathematics 2020, 8, 1470. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef]
- Andrei, L.; Caus, V.-A. A generalized class of functions defined by the q-difference operator. Symmetry 2021, 13, 2361. [Google Scholar] [CrossRef]
- Andrei, L.; Caus, V.-A. Starlikeness of new general differential operators associated with q-Bessel functions. Symmetry 2021, 13, 2310. [Google Scholar] [CrossRef]
- Amini, E.; Fardi, M.; Al-Omari, S.; Saadeh, R. Certain differential subordination results for univalent functions associated with q-Salagean operators. AIMS Math. 2023, 8, 15892–15906. [Google Scholar] [CrossRef]
- Noor, K.I.; Altinkaya, Ş.; Yalçin, S. Coefficient inequalities of analytic functions equipped with conic domains involving q-analogue of Noor integral operator. Tbil. Math. J. 2021, 14, 1–14. [Google Scholar] [CrossRef]
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1990; Volume 35. [Google Scholar]
- Matarneh, K.; Abubakar, A.A.; Khan, M.F.; Al-Shaikh, S.B.; Kamal, M. Study of quantum calculus for a new subclass of bi-univalent functions associated with the cardioid domain. Heliyon 2024, 10, e32359. [Google Scholar] [CrossRef]
- Hadid, S.B.; Ibrahim, R.W.; Momani, S. A new measure of quantum starlike functions connected with Julia functions. J. Funct. Spaces 2022, 2022, 4865785. [Google Scholar] [CrossRef]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Tang, H.; Gul, I.; Hussain, S.; Noor, S. Bounds for Toeplitz determinants and related inequalities for a new subclass of analytic functions. Mathematics 2023, 11, 3966. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Grundlehren der Mathematicians Wissenschaften; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1983; Volume 259. [Google Scholar]
- Thomas, D.K.; Tuneski, N.; Vasudevarao, A. Univalent Functions. In A Primer, de Gruyter Studies in Mathematics; De Gruyter: Berlin, Germany, 2018; Volume 69. [Google Scholar]
- Hayami, T.; Owa, S. Generalized Hankel determinant for certain classes. Int. J. Math. Anal. 2010, 4, 2573–2585. [Google Scholar]
- Dienes, P. The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable; New York-Dover Publishing Company: Mineola, NY, USA, 1957. [Google Scholar]
- Noonan, J.W.; Thomas, D.K. On the second Hankel determinant of areally mean p-valent functions. Trans. Am. Math. Soc. 1976, 223, 337–346. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [Google Scholar] [CrossRef]
- Hartman, P.; Wintner, A. The spectra of Toeplitz’s matrices. Am. J. Math. 1954, 76, 867–882. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gul, B.; Ritelli, D.; Alhefthi, R.K.; Arif, M. A Novel Family of Starlike Functions Involving Quantum Calculus and a Special Function. Fractal Fract. 2025, 9, 179. https://doi.org/10.3390/fractalfract9030179
Gul B, Ritelli D, Alhefthi RK, Arif M. A Novel Family of Starlike Functions Involving Quantum Calculus and a Special Function. Fractal and Fractional. 2025; 9(3):179. https://doi.org/10.3390/fractalfract9030179
Chicago/Turabian StyleGul, Baseer, Daniele Ritelli, Reem K. Alhefthi, and Muhammad Arif. 2025. "A Novel Family of Starlike Functions Involving Quantum Calculus and a Special Function" Fractal and Fractional 9, no. 3: 179. https://doi.org/10.3390/fractalfract9030179
APA StyleGul, B., Ritelli, D., Alhefthi, R. K., & Arif, M. (2025). A Novel Family of Starlike Functions Involving Quantum Calculus and a Special Function. Fractal and Fractional, 9(3), 179. https://doi.org/10.3390/fractalfract9030179