On the Motion of a Charged Colloid with a Harmonic Trap
Abstract
1. Introduction
2. Motion with a Harmonic Trap in the Presence of a Magnetic Field
2.1. The Joint Probability Density
2.2. Probability Densities and in Three-Time Domains
2.2.1. p(x,t) and in the Time Domain
2.2.2. p(x,t) and in the Time Domain
2.2.3. p(x,t) and for
2.3. Probability Densities and in Three-Time Domains
2.3.1. p(y,t) and in the Time Domain
2.3.2. p(y,t) and in the Time Domain
2.3.3. p(y,t) and in the Time Domain
3. Fractional Generalized Langevin Equation
3.1. with Thermal Noise
3.1.1. with the Thermal Noise in Short-Time Domain
3.1.2. with Thermal Noise in the Long-Time Domain
3.1.3. with the Thermal Noise for
3.2. with the Thermal Noise
3.2.1. and in
3.2.2. and in
3.2.3. and in the Time Domain
3.3. and with the Active Noise
3.3.1. and with the Active Noise in the Short-Time Domain
3.3.2. and with the Active Noise in the Long-Time Domain
3.3.3. and with the Active Noise for
3.4. and with the Active Noise
3.4.1. and with the Active Noise in the Short-Time Domain
3.4.2. and with the Active Noise in the Long-Time Domain
3.4.3. and with the Active Noise for
4. Thermal and Active Fractional Generalized Langevin Equation
4.1. and with the Thermal Noise
4.1.1. and with the Thermal Noise in the Short-Time Domain
4.1.2. and with the Thermal Noise in the Long-Time Domain
4.1.3. and with the Thermal Noise for
4.2. with Thermal Noise
4.2.1. and in the Time Domain
4.2.2. and in the Time Domain
4.2.3. and in the Time Domain
4.3. and with Active Noise
4.3.1. and with Active Noise in the Short-Time Domain
4.3.2. and with the Active Noise in the Long-Time Domain
4.3.3. and with the Active Noise for
4.4. with Thermal Noise
4.4.1. and in the Time Domain
4.4.2. and in the Time Domain
4.4.3. and in the Time Domain
4.5. Mean Squared Displacement and Mean Squared Velocity
4.6. Comparison with Existing Active and Viscoelastic Model
5. Statistical Quantities
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Supplementary Paragraphs and Formulas of the Joint Probability Density
Appendix B. Time Derivations of and
Appendix C. Table of Symbols
| Symbol | Physical Meaning | Unit |
| Position coordinates of the charged colloid | m | |
| Velocity components | m s−1 | |
| External magnetic field strength | T | |
| Charge of colloid | C | |
| Effective mass of the colloid | kg | |
| Harmonic trap stiffness constants | N m−1 | |
| Viscous damping coefficients | s−1 | |
| Thermal random noise components | – | |
| Active noise components | – | |
| Hurst exponent | – | |
| Correlation times | s | |
| Mean-squared displacement (MSD), Mean-squared velocity (MSV) | m2, m2 s−2 | |
| , | x-component Joint probability density y-component Joint probability density | – |
| Noise intensity parameters | – | |
| Time-dependent diffusion-related coefficients | – |
References
- Marchetti, M.C.; Joanny, J.F.; Ramaswamy, S.; Liverpool, T.B.; Prost, J.; Rao, M.; Simha, R.A. Hydrodynamics of soft active matter. Rev. Mod. Phys. 2013, 85, 143. [Google Scholar] [CrossRef]
- Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G. Active particles in complex and crowded environments. Rev. Mod. Phys. 2016, 88, 045006. [Google Scholar] [CrossRef]
- Doerries, T.J.; Loos, S.A.M.; Klapp, S.H.L. Correlation functions of non-Markovian systems out of equilibrium: Analytical expressions beyond single-exponential memory. J. Stat. Mech. 2021, 2021, 033202. [Google Scholar] [CrossRef]
- Lee, S.; Kwon, C. Non-equilibrium driven by an external torque in the presence of a magnetic field. arXiv 2019, arXiv:1901.02622v2. [Google Scholar] [CrossRef]
- Taylor, B. Diffusion of Plasma Ions across a Magnetic Field. Phys. Fluids 1961, 4, 1142. [Google Scholar] [CrossRef]
- Kursunoglu, B. Brownian motion in a magnetic field. Ann. Phys. 1962, 17, 259. [Google Scholar] [CrossRef]
- Xiang, N. Stochastic motion of charged particles in a magnetic field. Phys. Rev. E 1993, 48, 1590. [Google Scholar] [CrossRef][Green Version]
- Balescu, R. Statistical Dynamics: Matter out of Equilibrium; Imperial Coll.: London, UK, 1997. [Google Scholar]
- Czopnik, R.; Garbaczewski, P. Brownian motion in a magnetic field. Phys. Rev. E 2001, 63, 021105. [Google Scholar] [CrossRef]
- Jimnez-Aquino, J.; Romero-Bastida, M. Fokker-Planck-Kramers equations of a heavy ion in presence of external fields. Phys. Rev. E 2007, 76, 021106. [Google Scholar] [CrossRef]
- Jayannavar, A.M.; Sahoo, M. Charged particle in a magnetic field: Jarzynski equality. Phys. Rev. E 2007, 75, 032102. [Google Scholar] [CrossRef]
- Jimnez-Aquino, J.; Uribe, F.; Velasco, R. Work-fluctuation theorems for a particle in an electromagnetic field. J. Phys. A 2010, 43, 255001. [Google Scholar] [CrossRef]
- Jimnez-Aquino, J.; Romero-Bastida, M. Brownian motion of a harmonic oscillator in a noninertial reference frame. Phys. Rev. E 2013, 88, 022151. [Google Scholar] [CrossRef]
- Klages, R.; Radons, G.; Sokolov, I.M. Anomalous Transport; Wiley-VCH Verlag: Berlin, Germany, 2008. [Google Scholar]
- Pękalski, A.; Sznajd-Weron, K. Anomalous Diffusion: From Basics to Applications; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Evangelista, L.R.; Lenzi, E.K. An Introduction to Anomalous Diffusion and Relaxation; Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- Meerschaert, M.M.; Sikorskii, A. Stochastic Models for Fractional Calculus; Walter de Gruyter GmbH: Berlin, Germany, 2019. [Google Scholar]
- Bouchaud, J.P.; Georges, A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 1990, 195, 127. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1. [Google Scholar] [CrossRef]
- Sokolov, I.M. Models of anomalous diffusion in crowded environments. Soft Matter 2012, 8, 9043. [Google Scholar] [CrossRef]
- Hofling, F.; Franosch, T. Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys. 2013, 76, 046602. [Google Scholar] [CrossRef] [PubMed]
- Metzler, R.; Jeon, J.-H.; Cherstvy, A.G.; Barkai, E. Anomalous diffusion models and their properties: Nonstationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 2014, 16, 24128. [Google Scholar] [CrossRef] [PubMed]
- Mitterwallner, B.G.; Schreiber, C.; Daldrop, J.O.; Rädler, J.; Netz, R.R. Non-Markovian data-driven modeling of single-cell motility. Phys. Rev. E 2020, 101, 032408. [Google Scholar] [CrossRef]
- Berner, J.; Müller, B.; Gomez-Solano, J.R.; Krüger, M.; Bechinger, C. Oscillating modes of driven colloids in overdamped systems. Nat. Commun. 2018, 9, 999. [Google Scholar] [CrossRef]
- Straube, A.V.; Kowalik, B.G.; Netz, R.R.; Höfling, F. Rapid onset of molecular friction in liquids bridging between the atomistic and hydrodyn-amic pictures. Commun. Phys. 2020, 3, 126. [Google Scholar] [CrossRef]
- Narinder, N.; Gomez-Solano, J.R.; Bechinger, C. Active particles in geometrically confined viscoelastic fluids. New J. Phys. 2019, 21, 093058. [Google Scholar] [CrossRef]
- Gernert, R.; Loos, S.A.M.; Lichtner, K.; Klapp, S.H.L. Control of Self-Organizing Nonlinear Systems; Springer: Berlin/Heidelberg, Germany, 2016; pp. 375–392. [Google Scholar]
- Lichtner, K.; Klapp, S.H.L. Feedback-controlled transport in an interacting colloidal system. Europhys. Lett. 2010, 92, 40007. [Google Scholar] [CrossRef]
- Narinder, N.; Bechinger, C.; Gomez-Solano, J.R. Memory-Induced Transition from a Persistent Random Walk to Circular Motion for Achiral Microswimmers. Phys. Rev. Lett. 2018, 121, 078003. [Google Scholar] [CrossRef]
- Kyaw, T.H.; Bastidas, V.M.; Tangpanitanon, J.; Romero, G.; Kwek, L.C. Dynamical quantum phase transitions and non-Markovian dynamics. Phys. Rev. A 2020, 101, 012111. [Google Scholar] [CrossRef]
- Munakata, T.; Rosinberg, M.L. Entropy Production and Fluctuation Theorems for Langevin Processes under Continuous Non-Markovian Feedback Control. Phys. Rev. Lett. 2014, 112, 180601. [Google Scholar] [CrossRef]
- Loos, S.A.M.; Klapp, S.H.L. Irreversibility, heat and information flows induced by non-reciprocal interactions. New J. Phys. 2020, 22, 123051. [Google Scholar] [CrossRef]
- Grass, D.D.; Alonso, J.J.; Lutz, E.; Kiesel, N. Thermodynamics of continuous non-Markovian feedback control. Nat. Commum. 2020, 11, 1360. [Google Scholar]
- Heinrichs, J. Probability distributions for second-order processes. Phys. Rev. E 1993, 47, 3007. [Google Scholar] [CrossRef] [PubMed]
- Desiderio, L.; Falletta, S.; Ferrari, M.; Scuderi, L. On the Coupling of the Curved Virtual Element Method with the One-Equation Boundary Element Method for 2D Exterior Helmholtz Problems. SIAM J. Numer. Anal. 2022, 60, 2099. [Google Scholar] [CrossRef]
- Vinod, D.; Cherstvy, A.G.; Wang, W.; Metzler, R.; Sokolov, I.M. Nonergodicity of reset geometric Brownian motion. Phys. Rev. E 2022, 105, L012106. [Google Scholar] [CrossRef] [PubMed]
- Cherstvy, A.G.; Safdari, H.; Metzler, R. Anomalous diffusion, nonergodicity, and ageing for exponentially and logarithmically time-dependent diffusivity: Striking differences for massive versus massless particles. J. Phys. D Appl. Phys. 2021, 54, 195401. [Google Scholar] [CrossRef]
- Cherstvy, A.G.; Wang, W.; Metzler, R.; Sokolov, I.M. Inertia triggers nonergodicity of fractional Brownian motion. Phys. Rev. E 2021, 104, 024115. [Google Scholar] [CrossRef]
- Caprini, L.; Marconi, U.M.B.; Vulpiani, A. Linear response and correlation of a self-propelled particle in the presence of external fields. J. Stat. Mech. 2018, 2018, 033203. [Google Scholar] [CrossRef]
- Caprini, L.; Marconi, U.M.B.; Vulpiani, A. Inertial self-propelled particles. J. Chem. Phys. 2018, 154, 024902. [Google Scholar] [CrossRef]
- Sprenger, A.R.; Caprini, L.; Löwen, H.; Wittmann, R. Dynamics of active particles with translational and rotational inertia. J. Phys. Condens. Matter 2023, 35, 305101. [Google Scholar] [CrossRef]
- Reverey, J.F.; Jeon, J.-H.; Leippe, M.; Metzler, R.; Selhuber-Unkel, C. Superdiffusion dominates intracellular particle motion in the supercrowded space of pathogenic Acanthamoeba castellanii. Sci. Rep. 2015, 5, 11690. [Google Scholar] [CrossRef]
- Meroz, Y.; Sokolov, I.M. A toolbox for determining subdiffusive mechanisms. Phys. Rep. 2015, 573, 1. [Google Scholar] [CrossRef]
- Cheridito, P.; Kawaguchi, H.; Maejima, M. Fractional Ornstein–Uhlenbeck Processes. Electron. J. Probab. 2003, 8, 1. [Google Scholar] [CrossRef]
- He, Y.; Burov, S.; Metzler, R.; Barkai, E. Random time-scale invariant diffusion and transport coefficients. Phys. Rev. Lett. 2008, 101, 058101. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Barkai, E. Ergodic properties of fractional Brownian–Langevin motion. Phys. Rev. E 2009, 79, 011112. [Google Scholar] [CrossRef]
- Slezak, J.; Metzler, R.; Magdziarz, M. Codifference can detect ergodicity breaking and non-Gaussianity. New J. Phys. 2019, 21, 053008. [Google Scholar] [CrossRef]
- Risken, H. The Fokker–Planck Equation: Methods of Solution and Application, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Volpe, G.; Volpe, G. Simulation of a Brownian particle in an optical trap. Am. J. Phys. 2013, 81, 224. [Google Scholar] [CrossRef]
- Volpe, G.; Volpe, G.; Petrov, D. Brownian motion in a nonhomogeneous force field and photonic force microscope. Phys. Rev. E 2007, 76, 061118. [Google Scholar] [CrossRef][Green Version]
- Desiderio, L.; Falletta, S.; Scuderi, L. A Virtual Element Method coupled with a Boundary Integral NonReflecting condition for 2D exterior Helmholtz problems. Comput. Math. Appl. 2021, 84, 296. [Google Scholar] [CrossRef]
- Falletta, S.; Ferrari, M.; Scuderi, L. A virtual element method for the solution of 2D time-harmonic elastic wave equations via scalar potentials. arXiv 2023, arXiv:2303.10696v1. [Google Scholar] [CrossRef]
- Ignés-Mullol, J.; Puente, C.; Tierno, P. Experiments with Active and Driven Synthetic Colloids in Non-Newtonian Fluids. Curr. Opin. Colloid Interface Sci. 2022, 58, 101580. [Google Scholar]
- Demirörs, A.F.; Ladavac, K.; Aghababaei, R.; Su, S.; Snezhko, A. Magnetic Propulsion of Colloidal Microrollers Controlled by Electric Load. Soft Matter 2021, 17, 1198–1207. [Google Scholar] [CrossRef]
- Jung, J.W.; Seo, S.K.; Kim, K. Joint probability densities of an active particle coupled to two heat reservoirs. Phys. A 2025, 668, 130483. [Google Scholar] [CrossRef]
- Jung, J.W.; Seo, S.K.; Kim, K. Dynamical behavior of passive particles with harmonic, viscous, and correlated Gaussian forces. Phys. Lett. A 2025, 546, 130512. [Google Scholar] [CrossRef]
- Kang, Y.J.; Jung, J.W.; Seo, S.K.; Kim, K. On the Stochastic Motion Induced by Magnetic Fields in Random Environments. Entropy 2025, 27, 330. [Google Scholar] [CrossRef] [PubMed]
| Section | Model | Time Domain | MSD ⟨x2(t)⟩, ⟨y2(t)⟩ | |
|---|---|---|---|---|
| Section 2.2 and Section 2.3 | A charged colloid with a harmonic trap | |||
| Section 3.1 and Section 3.2 | Thermal fractional Langevin equation with viscoelastic kernel | |||
| Section 3.3 and Section 3.4 | Active fractional Langevin equation | |||
| with viscoelastic kernel | ||||
| Section 4.1 and Section 4.2 | Thermal fractional Langevin equation | |||
| Section 4.3 and Section 4.4 | Active fractional Langevin equation | |||
| Time | , | |||||
|---|---|---|---|---|---|---|
| Time | , | |||||
|---|---|---|---|---|---|---|
| Time | , | |||||
|---|---|---|---|---|---|---|
| Time | , | |||||
|---|---|---|---|---|---|---|
| Time | , | |||||
|---|---|---|---|---|---|---|
| Time | , | |||||
|---|---|---|---|---|---|---|
| Time | , | |||||
|---|---|---|---|---|---|---|
| Time | , | |||||
|---|---|---|---|---|---|---|
| Time | , | |||||
|---|---|---|---|---|---|---|
| Time | , | |||||
|---|---|---|---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.J.; Seo, S.K.; Kwon, S.; Kim, K. On the Motion of a Charged Colloid with a Harmonic Trap. Fractal Fract. 2025, 9, 788. https://doi.org/10.3390/fractalfract9120788
Kang YJ, Seo SK, Kwon S, Kim K. On the Motion of a Charged Colloid with a Harmonic Trap. Fractal and Fractional. 2025; 9(12):788. https://doi.org/10.3390/fractalfract9120788
Chicago/Turabian StyleKang, Yun Jeong, Sung Kyu Seo, Sungchul Kwon, and Kyungsik Kim. 2025. "On the Motion of a Charged Colloid with a Harmonic Trap" Fractal and Fractional 9, no. 12: 788. https://doi.org/10.3390/fractalfract9120788
APA StyleKang, Y. J., Seo, S. K., Kwon, S., & Kim, K. (2025). On the Motion of a Charged Colloid with a Harmonic Trap. Fractal and Fractional, 9(12), 788. https://doi.org/10.3390/fractalfract9120788

