Fixed Points of Exponential-Type Contractions in Fuzzy Metric Spaces with Applications to Nonlinear Fractional Boundary Value Problems
Abstract
1. Introduction
2. Mathematical Preliminaries
- Commutativity: ;
- Associativity: ;
- Monotonicity: if and , then ;
- Identity: .
- , ;
- for all if and only if ;
- ;
- ;
- The function is left continuous on .
- (i)
- A sequence in X is said to be G-Cauchy if
- (ii)
- A sequence in X is said to converge to if
- (iii)
- A fuzzy metric space is called G-complete if every G-Cauchy sequence in X is convergent.
- ;
- ;
- ;
- ;
- is continuous.
- A sequence is called M-Cauchy if
- A sequence converges to a point (denoted ) if
- The space is M-complete if every M-Cauchy sequence in X is convergent.
- (1)
- ,
- (2)
- .
3. Main Results
3.1. Class of Fuzzy Exponential Contractions
- (i)
- For all , there exists , such that for all .
- Case I (): For all both sides are 0. The inequality holds.
- Case II (): For , , so the inequality simplifies to
| 3 | 2 | ||||
| 2 | 1 | ||||
| 1 | 0 | ||||
| 3 | 2 | ||||
| 6 | 2 | ||||
| 2 | 1 |
3.2. Weakening the Continuity Condition
- (i)
- If is fuzzy continuous, then T is fuzzy Picard-continuous.
- (ii)
- The converse is not true: there exist fuzzy Picard-continuous mappings that are not fuzzy continuous (see Example 2).
- (iii)
- Fuzzy Picard-continuity is a weaker condition than fuzzy continuity and is sufficient for establishing the convergence of Picard iterations to fixed points.
- if , then . The Picard iterates , starting from any point , settle to the value a for all . Therefore, the hypothesis implies that , which forces . With , the conclusion of the condition becomes . Since for , the limit is . Since the condition holds, T is fuzzy Picard continuous.
- Define by
- Case I (): For all both sides are 0. The inequality holds.
- Case II (): For all , . Taking logarithms and simplifying yields the equivalent inequality:
- Subcase 1 (): Both sides are 0. The inequality holds.
- Subcase 2 (): LHS is 0. RHS is . Thus, holds.
- Subcase 3 (: Note that and . therefore,
- Subcase 4 (): This case is symmetric to Case 3.
4. Application to a Nonlinear Fractional Boundary Value Problems
- (i)
- is continuous.
- (ii)
- (Generalized Lipschitz Condition) There exists a function , such that for all and all ,
- (iii)
- (T-Invariance of ψ) The function ψ satisfies
- (iv)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Kannan, R. Some Results on Fixed Points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Chatterjea, S.K. Fixed Point Theorems. C. R. Acad. Bulgare Sci. 1972, 25, 727–730. [Google Scholar] [CrossRef]
- Ćirić, L.B. A Generalization of Banach’s Contraction Principle. Proc. Am. Math. Soc. 1974, 45, 267–273. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Deng, Z. Fuzzy Pseudo-Metric Spaces. J. Math. Anal. Appl. 1982, 86, 74–95. [Google Scholar] [CrossRef]
- Erceg, M.A. Metric Spaces in Fuzzy Set Theory. J. Math. Anal. Appl. 1979, 69, 205–230. [Google Scholar] [CrossRef]
- Kaleva, O.; Seikkala, S. On Fuzzy Metric Spaces. Fuzzy Sets Syst. 1984, 12, 215–229. [Google Scholar] [CrossRef]
- Kramosil, I.; Michalek, J. Fuzzy Metrics and Statistical Metric Spaces. Kybernetika 1975, 11, 336–344. [Google Scholar]
- George, A.; Veeramani, P. On Some Results in Fuzzy Metric Spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef]
- Grabiec, M. Fixed Points in Fuzzy Metric Spaces. Fuzzy Sets Syst. 1988, 27, 385–389. [Google Scholar] [CrossRef]
- Fang, J.X. On Fixed Point Theorems in Fuzzy Metric Spaces. Fuzzy Sets Syst. 1992, 46, 107–113. [Google Scholar] [CrossRef]
- Mishra, S.N.; Sharma, N.; Singh, S.L. Common Fixed Points of Maps on Fuzzy Metric Spaces. Int. J. Math. Math. Sci. 1994, 17, 253–258. [Google Scholar] [CrossRef]
- Miheț, D. A Class of Contractions in Fuzzy Metric Spaces. Fuzzy Sets Syst. 2010, 161, 1131–1137. [Google Scholar] [CrossRef]
- Gregori, V.; Miñana, J.-J.; Miravet, D. Extended Fuzzy Metrics and Fixed Point Theorems. Mathematics 2019, 7, 303. [Google Scholar] [CrossRef]
- Moussaoui, A.; Radenović, S.; Melliani, S. Fixed point theorems involving FZ-ϑ f-contractions in GV-fuzzy metrics. Filomat 2024, 38, 1973–1985. [Google Scholar] [CrossRef]
- Gregori, V.; Miñana, J.-J.; Roig, B.; Sapena, A. On Completeness and Fixed Point Theorems in Fuzzy Metric Spaces. Mathematics 2024, 12, 287. [Google Scholar] [CrossRef]
- Wardowski, D. Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 2013, 222, 108–114. [Google Scholar] [CrossRef]
- Tirado, P. On compactness and G-completeness in fuzzy metric spaces. Iran. J. Fuzzy Syst. 2012, 9, 151–158. [Google Scholar]
- Jleli, M.; Păcurar, C.M.; Samet, B. Fixed Point Results for Contractions of Polynomial Type. Demonstr. Math. 2025, 58, 20250098. [Google Scholar] [CrossRef]
- Schweizer, B.; Sklar, A. Statistical Metric Spaces. Pac. J. Math. 1960, 10, 313–334. [Google Scholar] [CrossRef]
- Gregori, V.; Sapena, A. On Fixed-Point Theorems in Fuzzy Metric Spaces. Fuzzy Sets Syst. 2002, 125, 245–252. [Google Scholar] [CrossRef]
- Gassem, F.; Alfedeel Alnadhief, H.A.; Saleh, H.N.; Aldwoah, K.; Alqahtani, M.H.; Tedjani, A.H.; Blgys, M. Generalizing Kannan Fixed Point Theorem Using Higher-Order Metric Polynomials with Applications to Fractional Differential Equations. Fractal Fract. 2025, 9, 609. [Google Scholar] [CrossRef]
- Moumen, A.; Saleh, H.N.; Albala, H.; Aldwoah, K.; Saber, H.; EI Hassan, T.S. On Polynomial φ-Contractions with Applications to Fractional Logistic Growth Equations. Fractal Fract. 2025, 9, 366. [Google Scholar] [CrossRef]
- Alfaqih, W.M.; Sessa, S.; Saleh, H.N.; Imdad, M. Solving Fractional Differential Equations via New Relation-Theoretic Fuzzy Fixed Point Theorems. Mathematics 2025, 13, 2582. [Google Scholar] [CrossRef]
- Almalaiah, M.; Saber, H.; Moumen, A.; Ali, E.E.; Aldowah, K.; Hassan, M. Application of proven fixed point on modified cubic coupled model of impulsive equations in high-fractional order. Fractals 2025, 33, 1–21. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamza, A.E.; Tedjani, A.H.; Saleh, H.N.; Aldwoah, K.; Osman, O.; Saber, H.; Messaoudi, M. Fixed Points of Exponential-Type Contractions in Fuzzy Metric Spaces with Applications to Nonlinear Fractional Boundary Value Problems. Fractal Fract. 2025, 9, 730. https://doi.org/10.3390/fractalfract9110730
Hamza AE, Tedjani AH, Saleh HN, Aldwoah K, Osman O, Saber H, Messaoudi M. Fixed Points of Exponential-Type Contractions in Fuzzy Metric Spaces with Applications to Nonlinear Fractional Boundary Value Problems. Fractal and Fractional. 2025; 9(11):730. https://doi.org/10.3390/fractalfract9110730
Chicago/Turabian StyleHamza, Amjad E., Ali H. Tedjani, Hayel N. Saleh, Khaled Aldwoah, Osman Osman, Hicham Saber, and Mohammed Messaoudi. 2025. "Fixed Points of Exponential-Type Contractions in Fuzzy Metric Spaces with Applications to Nonlinear Fractional Boundary Value Problems" Fractal and Fractional 9, no. 11: 730. https://doi.org/10.3390/fractalfract9110730
APA StyleHamza, A. E., Tedjani, A. H., Saleh, H. N., Aldwoah, K., Osman, O., Saber, H., & Messaoudi, M. (2025). Fixed Points of Exponential-Type Contractions in Fuzzy Metric Spaces with Applications to Nonlinear Fractional Boundary Value Problems. Fractal and Fractional, 9(11), 730. https://doi.org/10.3390/fractalfract9110730

