New α-ɛ-Suzuki-Type Contraction Mapping Methods on Fractional Differential and Integral Equations
Abstract
1. Introduction
2. Preliminaries
- (1)
- is strictly increasing; i.e., such that .
- (2)
- For each sequence of , .
- (3)
- For every , .
- 1.
- has a φ in ;
- 2.
- For all , the sequence is convergent to φ in .
- 1.
- If , then
- 2.
- If infimum , and , then .
- (1)
- is strictly increasing; i.e., such that .
- ()
- Infimum .(or)
- ()
- There exists a sequence of such that .
- ()
- is continuous on .
- 1.
- ;
- 2.
- , and .
- (H) if each such that and .
3. Main Results
- (i)
- is α-admissible;
- (ii)
- such that .
- (i)
- is α-admissible;
- (ii)
- such that ;
- (iii)
- is continuous or orbitally continuous on .
- case-i: When ,
- case-ii: When ,
- case-iii: When ,
- Now,
- (i)
- is α-admissible;
- (ii)
- such that ;
- (iii)
- is continuous or orbitally continuous on .
4. Application
5. An Application to Fractional Differential Equations
- 1.
- ,
- 2.
- there exists such that , , ,
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Edelstein, M. On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 1962, s1-37, 74–79. [Google Scholar] [CrossRef]
- Čirič, L.B. Generalized contractions and fixed point theorems. Publ. l’Institut Mathématique 1971, 26, 19–26. [Google Scholar]
- Banach, S. Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales. Fund. Math. 1992, 3, 133–181. [Google Scholar] [CrossRef]
- Suzuki, T. A new type of fixed point theorem in metric spaces. Nonlinear Anal. Theory Methods Appl. 2009, 71, 5313–5317. [Google Scholar] [CrossRef]
- Secelean, N.A. Iterated function systems consisting of f-contractions. Fixed Point Theory Appl. 2013, 2013, 277. [Google Scholar] [CrossRef]
- Gordji, M.E.; Ramezani, M.; De la Sen, M.; Cho, Y.J. On orthogonal sets and Banach fixed point theorem. Fixed Point Theory 2017, 18, 569–578. [Google Scholar] [CrossRef]
- Cho, Y.J. Survey on metric fixed point theory and applications. In Advances in Real and Complex Ananlysis with Applications; Ruzhansky, M., Cho, Y.J., Agarwal, P., Area, I., Eds.; Trends in Mathematics; Springer: Singapore, 2017; pp. 183–241. [Google Scholar]
- Etemad, S.; Rezapour, S.; Samei, M.E. α-ψ-Contractions and solutions of a q-fractional differential inclusion with three-point boundary value conditions via computational results. Adv. Differ. Equ. 2020, 2020, 218. [Google Scholar] [CrossRef]
- Etemad, S.; Matar, M.M.; Ragusa, M.A.; Rezapour, S. Tripled fixed points and existence study to a tripled impulsive fractional differential system via measures of noncompactness. Mathematics 2022, 10, 25. [Google Scholar] [CrossRef]
- Joshi, M.; Tomar, A.; Abdeljawad, T. On fixed points, their geometry and application to satellite web coupling problem in S-metric spaces. AIMS Math. 2023, 8, 4407–4441. [Google Scholar] [CrossRef]
- Rezazgui, A.Z.; Tallafha, A.A.; Shatanawi, W. Common fixed point results via Aϑ-α-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space. AIMS Math. 2023, 8, 7225–7241. [Google Scholar] [CrossRef]
- Shatanawi, W.; Shatnawi, T.A.M. New fixed point results in controlled metric type spaces based on new contractive conditions. AIMS Math. 2023, 8, 9314–9330. [Google Scholar] [CrossRef]
- Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. J. Fixed Point Theory Appl. 2014, 2014, 210. [Google Scholar] [CrossRef]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
- Prakasam, S.K.; Gnanaprakasam, A.J.; Mani, G.; Jarad, F. Solving an integral equation via orthogonal generalized α-ψ-Geraghty contractions. AIMS Math. 2022, 8, 5899–5917. [Google Scholar] [CrossRef]
- Monfared, H.; Asadi, M.; Azhini, M.; O′Regan, D. F(ψ,φ)-Contractions for α-admissible mappings on M-metric spaces. Fixed Point Theory Appl. 2018, 2018, 22. [Google Scholar] [CrossRef]
- Karapinar, E.; Kumam, P.; Salimi, P. On α-ψ-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 2013, 94. [Google Scholar] [CrossRef]
- Karapinar, E. α-ψ-Greaghty contraction type mappings and some related fixed point results. Filomat 2014, 28, 37–48. [Google Scholar] [CrossRef]
- Alsulami, H.H.; Chandok, S.; Taoudi, M.A.; Erhan, I.M. Some fixed point theorems for (α,ψ)-rational type contractive mappings. Fixed Point Theory Appl. 2015, 2015, 97. [Google Scholar] [CrossRef]
- Taqbibt, A.; Savatovic, M.; Elomari, M.; Melliani, S. Some fixed point theorems for α-admissible θ-ϕ-multivalued contraction mappings in b-metric spaces. Appl. Anal. Discr. Math. 2025, 19, 150–175. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, A.; Kumar, M.; Mor, V.; Shukla, R. α-Admissible E-type contractions with respect to ξ and related fixed point theorems in supra metric space. Adv. Fixed Point Theory 2025, 15, 32. [Google Scholar] [CrossRef]
- Singh, Y.M.; Khan, M.S.; Kang, S.M. F-convex contraction via admissible mapping and related fixed point theorems with an application. Mathematics 2018, 6, 105. [Google Scholar] [CrossRef]
- Khan, M.S.; Singh, Y.M.; Maniu, G.; Postolache, M. On generalized convex contractions of type-2 in b-metric and 2-metric spaces. J. Nonlinear Sci. Appl. 2017, 10, 2902–2913. [Google Scholar] [CrossRef]
- Chauhan, R.P.; Kumar, S.; Momani, S.; Hadid, S. A dynamical study of the fractional order King Cobra model. In Computation and Modeling for Fractional Order Systems; Academic Press: Cambridge, MA, USA, 2024; pp. 135–154. [Google Scholar]
- Sene, N. Analysis of a fractional-order chaotic system in the context of the Caputo fractional derivative via bifurcation and Lyapunov exponents. J. King Saud Univ. Sci. 2021, 33, 101275. [Google Scholar] [CrossRef]
- Muthukumar, P.; Balasubramaniam, P.; Ratnavelu, K. Synchronization and an application of a novel fractional order King Cobra chaotic system. Chaos 2014, 24, 033105. [Google Scholar] [CrossRef]
- Petras, I. Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation; Springer: Berlin/Heidelberg, Germany, 2011; pp. 103–184. [Google Scholar]
- Ahmad, H.; Ud Din, F.; Younis, M.; Chen, L. A simple interpolative contraction approach for analyzing existence and uniqueness of solutions in the fractional-order King Cobra model. Chaos Solitons Fractals 2025, 199, 116578. [Google Scholar] [CrossRef]
- Chua, L.; Komuro, M.; Matsumoto, T. The double scroll family. IEEE Trans. Circuits Syst. 1986, 33, 1072–1118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Erden Ege, M.; Gnanaprakasam, A.J.; Mani, G.; Ege, O.; Xu, J. New α-ɛ-Suzuki-Type Contraction Mapping Methods on Fractional Differential and Integral Equations. Fractal Fract. 2025, 9, 692. https://doi.org/10.3390/fractalfract9110692
Zhang K, Erden Ege M, Gnanaprakasam AJ, Mani G, Ege O, Xu J. New α-ɛ-Suzuki-Type Contraction Mapping Methods on Fractional Differential and Integral Equations. Fractal and Fractional. 2025; 9(11):692. https://doi.org/10.3390/fractalfract9110692
Chicago/Turabian StyleZhang, Keyu, Meltem Erden Ege, Arul Joseph Gnanaprakasam, Gunaseelan Mani, Ozgur Ege, and Jiafa Xu. 2025. "New α-ɛ-Suzuki-Type Contraction Mapping Methods on Fractional Differential and Integral Equations" Fractal and Fractional 9, no. 11: 692. https://doi.org/10.3390/fractalfract9110692
APA StyleZhang, K., Erden Ege, M., Gnanaprakasam, A. J., Mani, G., Ege, O., & Xu, J. (2025). New α-ɛ-Suzuki-Type Contraction Mapping Methods on Fractional Differential and Integral Equations. Fractal and Fractional, 9(11), 692. https://doi.org/10.3390/fractalfract9110692

