Application of Fractional Calculus as an Interdisciplinary Modeling Framework
Funding
Conflicts of Interest
List of Contributions
- Zhao, C.; Dai, L.; Huang, Y. Fractional Order Sequential Minimal Optimization Classification Method. Fractal Fract. 2023, 7, 637.
- Yang, A.; Zhang, Q.; Qu, J.; Cui, Y.; Chen, Y. Solving and Numerical Simulations of Fractional-Order Governing Equation for Micro-Beams. Fractal Fract. 2023, 7, 204.
- Rasouli, S.M.M.; Costa, E.W.d.; Moniz, P.; Jalalzadeh, S. Inflation and Fractional Quantum Cosmology. Fractal Fract. 2023, 6, 655.
- Gude, J.J.; Bringas, P.G. Proposal of a General Identification Method for Fractional-Order Processes Based on the Process Reaction Curve. Fractal Fract. 2023, 6, 526.
- Fang, Y.; Li, S.; Fei, J. Adaptive Intelligent High-Order Sliding Mode Fractional Order Control for Harmonic Suppression. Fractal Fract. 2023, 6, 482.
- Li, X.; Wang, Y.; Shen, Y. Cluster Oscillation of a Fractional-Order Duffing System with Slow Variable Parameter Excitation. Fractal Fract. 2022, 6, 295.
- Toma, A.; Dragoi, F.; Postavaru, O. Enhancing the Accuracy of Solving Riccati Fractional Differential Equations. Fractal Fract. 2022, 6, 275.
- Gowda, R.J.; Singh, S.; Padmarajaiah, S.S.; Khan, U.; Zaib, A.; Weera, W. An Investigation of Fractional One-Dimensional Groundwater Recharge by Spreading Using an Efficient Analytical Technique. Fractal Fract. 2022, 6, 249.
- Farhadi, A.; Hanert, E. Front Propagation of Exponentially Truncated Fractional-Order Epidemics. Fractal Fract. 2022, 6, 53.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toma, A.; Mozyrska, D.; Postavaru, O.; Rebenciuc, M.; Bibic, S.M. Application of Fractional Calculus as an Interdisciplinary Modeling Framework. Fractal Fract. 2025, 9, 663. https://doi.org/10.3390/fractalfract9100663
Toma A, Mozyrska D, Postavaru O, Rebenciuc M, Bibic SM. Application of Fractional Calculus as an Interdisciplinary Modeling Framework. Fractal and Fractional. 2025; 9(10):663. https://doi.org/10.3390/fractalfract9100663
Chicago/Turabian StyleToma, Antonela, Dorota Mozyrska, Octavian Postavaru, Mihai Rebenciuc, and Simona M. Bibic. 2025. "Application of Fractional Calculus as an Interdisciplinary Modeling Framework" Fractal and Fractional 9, no. 10: 663. https://doi.org/10.3390/fractalfract9100663
APA StyleToma, A., Mozyrska, D., Postavaru, O., Rebenciuc, M., & Bibic, S. M. (2025). Application of Fractional Calculus as an Interdisciplinary Modeling Framework. Fractal and Fractional, 9(10), 663. https://doi.org/10.3390/fractalfract9100663

