Practical Stability of Observer-Based Control for Nonlinear Caputo–Hadamard Fractional-Order Systems
Abstract
:1. Introduction
- Novel Extension to Practical Observers: We extend the classical observer design to a practical observer, ensuring its robustness under real-world implementation conditions. This novel contribution is significant even for integer-order systems and particularly impactful for fractional-order systems.
- Caputo–Hadamard Fractional-Order Derivative: We introduce the Caputo–Hadamard fractional-order derivative into the observer design framework. Despite its potential for describing complex nonlocal properties, this derivative has not been fully explored in control theory, making our work a pioneering effort in this direction.
- Practical Stability of Nonlinear Fractional-Order Systems: We propose the concept of practical stability for nonlinear Hadamard fractional-order systems. Practical stability ensures that the system solutions converge toward a small ball around the origin, providing robustness against disturbances and perturbations—a vital characteristic for real-world applications.
- Extension of the OSL Condition: We extend the OSL condition, which is widely used in nonlinear observer design, to fractional-order systems. This ensures that the practical observer converges even in the presence of nonlinearities and disturbances, offering a new stability criterion for fractional-order control systems.
2. Preliminaries
3. Observer Design for Lipschitz Fractional-Order Systems
4. Observer Design for OSL and Quasi-OSL Fractional-Order Systems
5. Separation Principle
6. Illustrative Examples
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Hadamard, J. Essai sur l’étude des fonctions données par leur développement de Taylor. J. Math. Pures Appl. 1892, 8, 101–186. [Google Scholar]
- Erochenkova, G.; Lima, R. A fractional diffusion equation for a marker in porous media. Chaos Interdiscip. J. Nonlinear Sci. 2001, 11, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Del-Castillo-Negrete, D. Fractional diffusion models of anomalous transport. In Anomalous Transport: Foundations and Applications; Wiley: Hoboken, NJ, USA, 2008; pp. 163–212. [Google Scholar]
- Teka, W.W.; Upadhyay, R.K.; Mondal, A. Fractional-order leaky integrate-and-fire model with long-term memory and power law dynamics. Neural Netw. 2017, 93, 110–125. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Gómez, Á.; Langarica-Cordoba, D.; Martinez-Rodriguez, P.R.; González-Aguilar, H.; Guilbert, D.; Saldivar, B. Design and implementation of the Luenberger observer for estimating the voltage response of a PEM electrolyzer during supply current variations. IEEE Access. 2024, 12, 68266–68277. [Google Scholar] [CrossRef]
- Borja-Jaimes, V.; Coronel-Escamilla, A.; Escobar-Jiménez, R.F.; Adam-Medina, M.; Guerrero-Ramírez, G.V.; Sánchez-Coronado, E.M.; García-Morales, J. Fractional-Order Sliding Mode Observer for Actuator Fault Estimation in a Quadrotor UAV. Mathematics 2024, 12, 1247. [Google Scholar] [CrossRef]
- Park, G. Optimal vehicle position estimation using adaptive unscented Kalman filter based on sensor fusion. Mechatronics 2024, 99, 103144. [Google Scholar] [CrossRef]
- Moroz, V.V.; Gavriushin, S.S.; Murashov, M.V.; Baulina, L.V. Industrial Automation for Regulating the Technological Process of High-Pressure Hydrogen Generation. In Proceedings of the IEEE 25th International Conference of Young Professionals in Electron Devices and Materials (EDM), Altai, Russia, 28 June–2 July 2024; pp. 1680–1683. [Google Scholar]
- Jmal, A.; Naifar, O.; Ben Makhlouf, A.; Derbel, N.; Hammami, M.A. On observer design for nonlinear Caputo fractional-order systems. Asian J. Control 2018, 20, 1533–1540. [Google Scholar] [CrossRef]
- Echi, N.; Mabrouk, F. Observer based control for practical stabilization of one-sided Lipschitz nonlinear systems. Rocky Mt. J. Math. 2024, 54, 109–120. [Google Scholar] [CrossRef]
- Naifar, O.; Makhlouf, A.B. Fractional Order Systems—Control Theory and Applications, Fundamentals and Applications. In Studies in Systems, Decision and Control Series; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Marzougui, S.; Bedoui, S.; Atitallah, A.; Abderrahim, K. Parameter and state estimation of nonlinear fractional-order model using Luenberger observer. Circuits Syst. Signal Process. 2022, 41, 5366–5391. [Google Scholar] [CrossRef]
- Iqbal, W.; Ghous, I.; Ansari, E.A.; Duan, Z.; Imran, M.; Khan, A.A.; Humayun, M.T. Robust nonlinear observer-based controller design for one-sided Lipschitz switched systems with time-varying delays. J. Frankl. Inst. 2023, 360, 2046–2067. [Google Scholar] [CrossRef]
- Su, B.; Zhang, F.; Huang, P. Observer-based adaptive backstepping control and the application for a class of multi-input multi-output nonlinear systems with structural uncertainties and perturbations. Int. J. Robust Nonlinear Control. 2023, 33, 6211–6232. [Google Scholar] [CrossRef]
- He, J.; Xiao, M.; Lu, Y.; Wang, Z.; Zheng, W.X. Fractional-order PID control of tipping in network congestion. Int. J. Syst. Sci. 2023, 54, 1873–1891. [Google Scholar] [CrossRef]
- Damak, H.; Hammami, M.A.; Heni, R. Input-to-state practical stability criteria of non-autonomous infinite-dimensional systems. J. Control. Decis. 2024, 11, 190–200. [Google Scholar] [CrossRef]
- Jothimani, K.; Valliammal, N.; Vijayakumar, V. An exploration of controllability on Hilfer fractional system via integral contractor. Math. Methods Appl. Sci. 2023, 46, 16156–16169. [Google Scholar] [CrossRef]
- Jothimani, K.; Valliammal, N.; Alsaeed, S.; Nisar, K.S.; Ravichandran, C. Controllability results of Hilfer fractional derivative through integral contractors. Qual. Theory Dyn. Syst. 2023, 22, 137. [Google Scholar] [CrossRef]
- Gassara, H.; Iben Ammar, I.; Ben Makhlouf, A.; Mchiri, L.; Rhaima, M. Design of Polynomial Observer-Based Control of Fractional-Order Power Systems. Mathematics 2024, 11, 4450. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issaoui, R.; Naifar, O.; Tlija, M.; Mchiri, L.; Ben Makhlouf, A. Practical Stability of Observer-Based Control for Nonlinear Caputo–Hadamard Fractional-Order Systems. Fractal Fract. 2024, 8, 531. https://doi.org/10.3390/fractalfract8090531
Issaoui R, Naifar O, Tlija M, Mchiri L, Ben Makhlouf A. Practical Stability of Observer-Based Control for Nonlinear Caputo–Hadamard Fractional-Order Systems. Fractal and Fractional. 2024; 8(9):531. https://doi.org/10.3390/fractalfract8090531
Chicago/Turabian StyleIssaoui, Rihab, Omar Naifar, Mehdi Tlija, Lassaad Mchiri, and Abdellatif Ben Makhlouf. 2024. "Practical Stability of Observer-Based Control for Nonlinear Caputo–Hadamard Fractional-Order Systems" Fractal and Fractional 8, no. 9: 531. https://doi.org/10.3390/fractalfract8090531
APA StyleIssaoui, R., Naifar, O., Tlija, M., Mchiri, L., & Ben Makhlouf, A. (2024). Practical Stability of Observer-Based Control for Nonlinear Caputo–Hadamard Fractional-Order Systems. Fractal and Fractional, 8(9), 531. https://doi.org/10.3390/fractalfract8090531