Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann–Liouville Boundary Conditions
Abstract
1. Introduction
2. Preliminaries Work
- is contraction;
- is u.s.c and compact.
- has fixed point in ; or
- there exists and such that .
3. Existence Results Under New Boundary Conditions
4. Existence Results via the Carathéodory Function
- are -Carathéodory and have convex values.
- There exists continuous increasing functions and functions , such that
- (A4) are such that and are measurable for each .
- (A5)∀ and with and , ∀.
5. Existence Results for Lipschitz Mappings
6. Example
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BVP | Boundary Value Problems |
CDs | Caputo Derivatives |
CFDs | Caputo Fractional Derivatives |
FDEs | Fractional Differential Equations |
FPDEs | Fractional Partial Differential Equations |
FDIs | Fractional Differential Inclusions |
FO | Fractional Order |
FBVPs | Fractional-Order Boundary Value Problems |
VOFDEs | Variable-Order Fractional Differential Equations |
SFDEs | Sequential Fractional Differential Equations. |
References
- Saadatmandi, A.; Dehghan, M. A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 2010, 59, 1326–1336. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fractals 2007, 31, 1248–1255. [Google Scholar] [CrossRef]
- Ahmed, I.; Baba, I.A.; Yusuf, A.; Kumam, P.; Kumam, W. Analysis of Caputo fractional-order model for COVID-19 with lockdown. Adv. Differ. Equ. 2020, 2020, 394. [Google Scholar] [CrossRef] [PubMed]
- Bushnaq, S.; Shah, K.; Tahir, S.; Ansari, K.J.; Sarwar, M.; Abdeljawad, T. Computation of numerical solutions to variable order fractional differential equations by using non-orthogonal basis. Aims Math. 2022, 7, 10917–10938. [Google Scholar] [CrossRef]
- Shah, K.; Naz, H.; Sarwar, M.; Abdeljawad, T. On spectral numerical method for variable-order partial differential equations. Aims Math. 2022, 7, 10422–10438. [Google Scholar] [CrossRef]
- Bushnaq, S.; Ali, S.; Shah, K.; Arif, M. Approximate solutions to nonlinear fractional order partial differential equations arising in ion-acoustic waves. Aims Math. 2019, 4, 721–739. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Tariboon, J. Nonlocal fractional-order boundary value problems with generalized Riemann-Liouville integral boundary conditions. J. Comput. Anal. Appl. 2017, 23, 1281–1296. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K.; Sudsutad, W. Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations. Bound. Value Probl. 2014, 2014, 253. [Google Scholar] [CrossRef]
- Kopteva, N.; Stynes, M. Analysis and numerical solution of a Riemann-Liouville fractional derivative two-point boundary value problem. Adv. Comput. Math. 2017, 43, 77–99. [Google Scholar] [CrossRef]
- Khan, Z.A.; Gul, R.; Shah, K. On impulsive boundary value problem with Riemann-Liouville fractional order derivative. J. Funct. Spaces 2021, 2021, 8331731. [Google Scholar] [CrossRef]
- Brandibur, O.; Garrappa, R.; Kaslik, E. Stability of systems of fractional-order differential equations with Caputo derivatives. Mathematics 2021, 9, 914. [Google Scholar] [CrossRef]
- Souıd, M.S.; Bouazza, Z.; Yakar, A. Existence, uniqueness, and stability of solutions to variable fractional order boundary value problems. J. New Theory 2022, 41, 82–93. [Google Scholar] [CrossRef]
- Prasad, K.R.; Khuddush, M.; Leela, D. Existence, uniqueness and Hyers–Ulam stability of a fractional order iterative two-point boundary value problems. Afr. Mat. 2021, 32, 1227–1237. [Google Scholar] [CrossRef]
- Lin, D.; Liao, X.; Dong, L.; Yang, R.; Samson, S.Y.; Iu, H.H.C.; Fernando, T.; Li, Z. Experimental study of fractional-order RC circuit model using the Caputo and Caputo-Fabrizio derivatives. IEEE Trans. Circuits Syst. Regul. Pap. 2021, 68, 1034–1044. [Google Scholar] [CrossRef]
- Sun, J.P.; Fang, L.; Zhao, Y.H.; Ding, Q. Existence and uniqueness of solutions for multi-order fractional differential equations with integral boundary conditions. Bound. Value Probl. 2024, 2024, 5. [Google Scholar] [CrossRef]
- Verma, P.; Kumar, M. Analytical solution with existence and uniqueness conditions of non-linear initial value multi-order fractional differential equations using Caputo derivative. Eng. Comput. 2022, 38, 661–678. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Existence results for Caputo type sequential fractional differential inclusions with nonlocal integral boundary conditions. J. Appl. Math. Comput. 2016, 50, 157–174. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K.; Ahmad, B.; Alsaedi, A. Existence results for sequential Riemann–Liouville and Caputo fractional differential inclusions with generalized fractional integral conditions. Mathematics 2020, 8, 1044. [Google Scholar] [CrossRef]
- Cheng, Y.; Agarwal, R.P.; Regan, D.O. Existence and controllability for nonlinear fractional differential inclusions with nonlocal boundary conditions and time-varying delay. Fract. Calc. Appl. Anal. 2018, 21, 960–980. [Google Scholar] [CrossRef]
- Manigandan, M.; Manikandan, K.; Hammad, H.A. Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions. Aims Math. 2024, 9, 15505–15542. [Google Scholar] [CrossRef]
- Manigandan, M.; Subramanian, M.; Nandha Gopal, T.; Unyong, B. Existence and stability results for a tripled system of the Caputo type with multi-point and integral boundary conditions. Fractal Fract. 2022, 6, 285. [Google Scholar] [CrossRef]
- Wang, Y. Positive solutions for fractional differential equation involving the Riemann–Stieltjes integral conditions with two parameters. J. Nonlinear Sci. Appl. 2016, 9, 5733–5740. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Zhang, X.; Wu, Y. Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection. Appl. Math. Comput. 2015, 258, 312–324. [Google Scholar] [CrossRef]
- Li, P.; Gao, R.; Xu, C.; Li, Y.; Akgül, A.; Baleanu, D. Dynamics exploration for a fractional-order delayed zooplankton–phytoplankton system. Chaos Solitons Fractals 2023, 166, 112975. [Google Scholar] [CrossRef]
- Awadalla, M.; Manigandan, M. Existence and Stability Results for Caputo-Type Sequential Fractional Differential Equations with New Kind of Boundary Conditions. Math. Probl. Eng. 2022, 2022, 3999829. [Google Scholar] [CrossRef]
- Elango, S. Second order singularly perturbed delay differential equations with non-local boundary condition. J. Comput. Appl. Math. 2023, 417, 114498. [Google Scholar] [CrossRef]
- Chang, Y.K.; Nieto, J.J. Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Model. 2009, 49, 605–609. [Google Scholar] [CrossRef]
- Kisielewicz, M. Stochastic Differential Inclusions and Applications; Springer: Berlin/Heidelberg, Germany, 2013; Volume 80. [Google Scholar]
- Ahmad, B.; Ntouyas, S.; Alsaedi, A. Coupled systems of fractional differential inclusions with coupled boundary conditions. Electron. J. Diff. Equ. 2019, 2019, 1–21. [Google Scholar]
- Hammad, H.A.; Zayed, M. Solving systems of coupled nonlinear Atangana–Baleanu-type fractional differential equations. Bound. Value Probl. 2022, 2022, 101. [Google Scholar] [CrossRef]
- Subramanian, M.; Manigandan, M.; Tunç, C.; Gopal, T.; Alzabut, J. On system of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order. J. Taibah Univ. Sci. 2022, 16, 1–23. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Petryshyn, W.; Fitzpatrick, P. A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact mappings. Trans. Am. Math. Soc. 1974, 194, 1–25. [Google Scholar] [CrossRef]
- Covitz, H.; Nadler, S. Multi-valued contraction mappings in generalized metric spaces. Isr. J. Math. 1970, 8, 5–11. [Google Scholar] [CrossRef]
- Wei, Z.; Li, Q.; Che, J. Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative. J. Math. Anal. Appl. 2010, 367, 260–272. [Google Scholar] [CrossRef]
- Lasota, A.; Opial, Z. An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 1965, 13, 781–786. [Google Scholar]
- Castaing, C.; Valadier, M.; Castaing, C.; Valadier, M. Measurable Multifunctions; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manigandan, M.; Shanmugam, S.; Rhaima, M.; Sekar, E. Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann–Liouville Boundary Conditions. Fractal Fract. 2024, 8, 441. https://doi.org/10.3390/fractalfract8080441
Manigandan M, Shanmugam S, Rhaima M, Sekar E. Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann–Liouville Boundary Conditions. Fractal and Fractional. 2024; 8(8):441. https://doi.org/10.3390/fractalfract8080441
Chicago/Turabian StyleManigandan, Murugesan, Saravanan Shanmugam, Mohamed Rhaima, and Elango Sekar. 2024. "Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann–Liouville Boundary Conditions" Fractal and Fractional 8, no. 8: 441. https://doi.org/10.3390/fractalfract8080441
APA StyleManigandan, M., Shanmugam, S., Rhaima, M., & Sekar, E. (2024). Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann–Liouville Boundary Conditions. Fractal and Fractional, 8(8), 441. https://doi.org/10.3390/fractalfract8080441